K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2017

Ta có :

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....................+\dfrac{1}{100^2}\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

..............................

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+................+\dfrac{1}{99.100}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...............+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A< 1-\dfrac{1}{100}< 1\)

\(\Rightarrow A< 1\) \(\rightarrowđpcm\)

18 tháng 5 2017

Ta có

\(\dfrac{1}{2^2}< \dfrac{1}{2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)

\(.........\)

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

Cộng theo vế ta có:

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A< 1-\dfrac{1}{100}< 1\)

Vậy \(A< 1\left(dpcm\right)\)

22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé

Giải

Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)

\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)

Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)

\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

D< 1 - \(\dfrac{1}{20}\)

D< \(\dfrac{19}{20}\)<1

\(\Rightarrow\)D< 1

Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1

30 tháng 4 2017

A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)

A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)

Ta có :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :

\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1

A<\(\dfrac{49}{200}< \dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}\)

1 tháng 3 2018

Câu 1.8: Giải

*Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)

...

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{9.10}\)

\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(A>\dfrac{1}{2}-\dfrac{1}{10}\)

\(A>\dfrac{2}{5}\) (1)

*Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)

...

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{8.9}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

\(A< 1-\dfrac{1}{9}\)

\(A< \dfrac{8}{9}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\)

7 tháng 5 2017

lầy dạ??

25 tháng 3 2017

Ta có:

A=\(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}\)

A<\(1+\dfrac{1}{2.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

A<\(1+\dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

A<\(\dfrac{5}{4}\)+\(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{99}-\dfrac{1}{100}\)

A<\(\dfrac{5}{4}+\dfrac{1}{2}-\dfrac{1}{100}\)

A<\(\dfrac{5}{4}+\dfrac{49}{100}\)

A<\(\dfrac{174}{100}\)<\(\dfrac{7}{4}\)

=>A<\(\dfrac{7}{4}\)

Tick giùm mink nha :D

26 tháng 4 2017

1/2^2<1/2.3,1/3^2<1/2.3,.....,1/100^2<1/99.100

A<1+1/2.3+1/3.4+....+1/99.100

A<1+1/2-1/3+1/3-1/4+1/4-1/5+....+1/99-1/100

A<1+1/2-1/100

A<3/2-1/100 mà 3/2=6/4

A<6/4-1/100<7/4

A<7/4

27 tháng 3 2017

Mk nghĩ là thê này nè , k biêt co đung k:

Ta co \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\) (1)

\(.......\)

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

Từ (1) \(=>B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{99}-\dfrac{1}{100}\)\(=1-\dfrac{1}{100}=\dfrac{99}{100}< 1\)

\(=>B< 1\left(đpcm\right)\)

tick cho mk nha

27 tháng 3 2017

thank you nhé !