K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

Ta có:

\(\left(ay-bx\right)^2\ge0\)

\(\Rightarrow a^2y^2+b^2x^2-2aybx\ge0\)

\(\Rightarrow a^2y^2+b^2x^2\ge2aybx\)

\(\Rightarrow a^2y^2+b^2x^2+a^2x^2+b^2y^2\ge2aybx+a^2x^2+b^2y^2\)

\(\Rightarrow\left(a^2x^2+a^2y^2\right)+\left(b^2y^2+b^2x^2\right)\ge\left(ax+by\right)^2\)

\(\Rightarrow a^2\left(x^2+y^2\right)+b^2\left(y^2+x^2\right)\ge\left(ax+by\right)^2\)

\(\Rightarrow\left(x^2+y^2\right)\left(a^2+b^2\right)\ge\left(ax+by\right)^2\)

\(\rightarrowđpcm\)

17 tháng 3 2018

Lên gg gõ: bđt bunhiacopxki nhé bạn. Chứng minh theo cách đưa về bp.

NV
3 tháng 6 2020

a/ \(\Leftrightarrow a^2-2a+1+b^2-2b+1\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b=1\)

b/ \(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2\ge a^2x^2+b^2y^2+2axby\)

\(\Leftrightarrow a^2y^2-2ay.bx+b^2x^2\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(ay=bx\)

31 tháng 3 2018

Nó là bđt bunyakovsky luôn rồi mà bạn,lên google sẽ có cách chứng minh

31 tháng 3 2018

Mk lên tra được câu a thôi

Bn giúp mk câu b đi

6 tháng 10 2017

2) ta có: \(VT=\left(a^2+b^2\right)\left(x^2+y^2\right)\)\(VP=\left(ax+by\right)^2\)

tính hiệu của cả VT và VP

suy ra: \(\left(ay+bx\right)^2=0\Rightarrow ay=bx\)

\(x,y\ne0\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\left(đpcm\right)\)

3)(a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2 (1)

biến đổi đẳng thức (1) thành (ay+bx)2 + (bz-cy)2 +(az-cx)2 =0

\(\Rightarrow\) Đpcm

7 tháng 4 2018

Đáng lẽ là bé hơn hoặc bằng

(ax + by)2 = a2x2 + 2axby + b2y2 

(a2 + b2)(x2 + y2) = a2x2 + a2y2 + b2x2 + b2y2

Ta cần chứng minh:

\(2axby\le b^2x^2+a^2y^2\)'

\(\Leftrightarrow0\le b^2x^2-2aybx+a^2y^2\)

<=> 0 \(\le\)(bx - ay)2 (đúng)

Vậy bđt đc chứng minh

28 tháng 5 2017

a) \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+b^2x^2+a^2y^2+b^2y^2=a^2x^2+b^2y^2+2abxy\)

\(\Leftrightarrow b^2x^2-2abxy+a^2y^2=0\)

\(\Leftrightarrow\left(bx\right)^2-2\cdot bx\cdot ay+\left(ay\right)^2=0\)

\(\Leftrightarrow\left(bx-ay\right)^2=0\Rightarrow bx=ay\Rightarrow\left(\frac{a}{x}=\frac{b}{y}\right)\)

b) \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)

\(\Leftrightarrow a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2\)

\(=a^2x^2+b^2y^2+c^2z^2+2abxy+2bcyz+2acxz\)

\(\Leftrightarrow b^2x^2-2bxay+a^2y^2+b^2z^2-2bzcy+c^2y^2+a^2z^2-2azcx+c^2x^2=0\)

\(\Leftrightarrow\left(bx-ay\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)

\(\hept{\begin{cases}bx=ay\\bz=cy\\az=cx\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{b}{y}=\frac{c}{z}\\\frac{a}{x}=\frac{c}{z}\end{cases}}\Rightarrow\left(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\right)}\)

c) \(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2+2ab=2a^2+2b^2\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\)

28 tháng 5 2017

a,  Tương đương   :   \(a^2x^2+a^2y^2+b^2x^2+b^2y^2\)   =   \(a^2x^2+2axby+b^2y^2\)  

                                 \(a^2y^2-2axby+b^2x^2=0\) 

                                 \(\left(ay-bx\right)^2\)  = 0

                                 \(ay-bx=0\)

                                 \(ay=bx\)

                                \(\frac{a}{x}=\frac{b}{y}\)   dpcm

Câu b, c làm tương tự câu a

28 tháng 6 2017

Ta có:

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)

\(=a^2x^2-2abxy+b^2y^2+a^2y^2+2abxy+b^2x^2\) \(=\left(ax-by\right)^2+\left(ay+bx\right)\)

\(=vp\)

\(\Rightarrowđpcm\)