Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{n^2+n^2\left(n+1\right)^2+\left(n+1\right)^2}\)
\(=\sqrt{n^2+\left(n^2+n\right)^2+\left(n^2+2n+1\right)}\)
\(=\sqrt{2\left(n^2+n\right)+\left(n^2+n\right)^2+1}\)
\(=\sqrt{\left(n^2+n+1\right)^2}=\left|n^2+n+1\right|=n^2+n+1\)
Suy ra đpcm
Đáp án của bạn ở đây: https://dethihsg.com/de-thi-hoc-sinh-gioi-toan-9-phong-gddt-cam-thuy-2011-2012/amp/
Ta xét : \(\left(n-1\right).n.\left(n+1\right)\left(n+2\right)+1=\left[\left(n-1\right)\left(n+2\right)\right].\left[n\left(n+1\right)\right]+1\)
\(=\left(n^2+n+2\right)\left(n^2+n\right)+1=\left(n^2+n\right)^2+2\left(n^2+n\right)+1=\left(n^2+n+1\right)^2\)
Suy ra \(A=12\sqrt{\left(n^2+n+1\right)^2}+23=12\left(n^2+n+1\right)+23=\left(2n+1\right)^2+\left(2n-3\right)^2+\left(2n+5\right)^2\)
\(\sqrt{n^2+n^2\left(n+1\right)^2+\left(n+1\right)^2}\)
\(=\sqrt{n^2+\left(n^2+n\right)^2+\left(n^2+2n+1\right)}\)
\(=\sqrt{2\left(n^2+n\right)+\left(n^2+n\right)^2+1}=\sqrt{\left(n^2+n+1\right)^2}\)
\(=\left|n^2+n+1\right|=n^2+n+1\) vì \(n^2+n+1=\left(n+\frac{1}{4}\right)^2+\frac{3}{4}>0\)
Do đó nếu \(\sqrt{n^2+n^2\left(n+1\right)^2+\left(n+1\right)^2}\) là số nguyên nếu n là số nguyên
Đặt \(\frac{5-\sqrt{21}}{2}=a;\frac{5+\sqrt{21}}{2}=b>0\) thì \(ab=1\)
*Chứng minh an là số tự nhiên.
Với n = 0, 1 nó đúng. Giả sử nó đúng đến n = k tức là ta có:
\(\hept{\begin{cases}a^{k-1}+b^{k-1}\inℤ\\a^k+b^k\inℤ\end{cases}}\). Ta cần chưng minh nó đúng với n = k + 1 hay:
\(a^k.a+b^k.b=\left(a^k+b^k\right)\left(a+b\right)-ab\left(b^{k-1}+a^{k-1}\right)\)
\(=\left(a^k+b^k\right)\left(a+b\right)-\left(b^{k-1}+a^{k-1}\right)\inℤ\) (em tắt tí nhá, dựa vào giả thiết quy nạp thôi)
Vậy ta có đpcm.
Còn lại em chưa nghĩ ra