Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(A=\left|x-500\right|+\left|x-300\right|=\left|x-500\right|+\left|300-x\right|\)
\(\ge\left|x-500+300-x\right|=200\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-500\right).\left(300-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-500\ge0\\300-x\ge0\end{cases}}\) hoặc \(\hept{\begin{cases}x-500\le0\\300-x\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge500\\x\le300\end{cases}}\) hoặc \(\Leftrightarrow\hept{\begin{cases}x\le500\\x\ge300\end{cases}}\) (vô lí)
Nên \(300\le x\le500\)
Vậy Amin = 200 khi và chỉ khi \(300\le x\le500\)
a) Ta có : \(|x+y|\le|x|+|y|\)
\(\Leftrightarrow\left(x+y\right)^2\le\left(|x|+|y|\right)^2\)
\(\Leftrightarrow x^2+2.x.y+y^2\le x^2+2.|x|.|y|+y^2\)
\(\Leftrightarrow xy\le|x||y|\)
Do bất đẳng thức cuối đúng nên bất đẳng thức đầu đúng.
Dấu bằng xảy ra khi \(xy=|x||y|\Rightarrow xy\ge0\)
b) Từ câu (a) ta có: \(|x-y|+|y|\ge|x-y+y|=|x|\)
\(\Rightarrow|x-y|\ge|x|-|y|\)
Dấu bằng xảy ra khi A-B và B cùng dấu.
\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y+y+z+x+z}{z+x+y}=\frac{2\left(x+y+z\right)}{x+y+z}=2\) Tính chất tỷ lệ thức cứ nhó và cho vào thôi
\(\frac{x+y}{z}=2\Rightarrow\left(x+y\right)=2z\Rightarrow K=2\)vậy thôi
Bài 1:
Giải:
Ta có: \(\frac{1+3y}{12}=\frac{1+7y}{4x}=\frac{1+1+3y+7y}{12+4x}=\frac{2+10y}{2\left(6+2x\right)}=\frac{2\left(1+5y\right)}{2\left(6+2x\right)}=\frac{1+5y}{6+2x}=\frac{1+5y}{5x}\)
+) Xét \(1+5y=0\Rightarrow y=\frac{-1}{5}\Rightarrow1+5y=0\) ( loại )
+) Xét \(1+5y\ne0\Rightarrow6+2x=5x\)
\(\Rightarrow5x-2x=6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Mà \(\frac{1+3y}{12}=\frac{1+5y}{5x}\)
\(\Rightarrow\frac{1+3y}{12}=\frac{1+5y}{10}\)
\(\Rightarrow10\left(1+3y\right)=12\left(1+5y\right)\)
\(\Rightarrow10+30y=12+60y\)
\(\Rightarrow10-12=60y-30y\)
\(\Rightarrow-2=30y\)
\(\Rightarrow y=\frac{-1}{15}\)
Vậy \(x=2,y=\frac{-1}{15}\)
a) Ta có: \(|\frac{1}{2}x-3y+1|\ge0\) và \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\)
=> \(|\frac{1}{2}x-3y+1|=-\left(x-1\right)^2=0\)
=> x-1=0
=> x=1
\(|\frac{1}{2}x-3y+1|=0\)
=> \(\frac{1}{2}.1-3y+1=0\)
=> \(\frac{1}{2}-3y=-1\)
=> \(3y=\frac{1}{2}-\left(-1\right)\)
=>\(3y=\frac{1}{2}+1=\frac{3}{2}\)
=> \(y=\frac{3}{2}:3=\frac{3}{2}.\frac{1}{3}=\frac{1}{2}\)
b) Có: \(x^2\le y;y^2\le z;z\le x\)
=> \(x^4\le y^2\) và \(y^2\le x\)
=> \(x^4\le x\)
=> \(x^4=x\)
=> \(x\in\left\{0;1\right\}\)
Có: \(x^4\le y^2\); \(y^2\le z\)và \(z\le x\)
=> \(x^4\le z\le x\)
Mà \(x^4=x\)
=> \(x^4=x=z\)
=> \(z\in\left\{0;1\right\}\)
Có: \(x^4\le y^2\)và \(y^2\le z\)
=> \(x^4\le y^2\le z\)
Mà \(x^4=x=z\)
=> \(x^4=y^2\)
=> \(y^2\in\left\{0;1\right\}\)
=> \(y\in\left\{0;1\right\}\)
c)=> \(z=\frac{8-x}{3}\)và \(y=\frac{9-2}{2}\)
=> \(x+y+z=x+\frac{9-x}{2}+\frac{8-x}{3}=\frac{6x}{6}+\frac{27-3x}{6}+\frac{16-2x}{6}=\frac{6x+27-3x+16-2x}{6}\)
\(=\frac{x+43}{6}\)
..........Chỗ này?! Có gì đó sai sai.........
Mình nghĩ là \(x;y;z\in N\)thì mới đúng, chứ không âm thì nó có thể làm số thập phân...........Bạn xem lại cái đề đi
d) => \(a^2bc=-4;ab^2c=2;abc^2=-2\)
=> \(ab^2c+abc^2=2+\left(-2\right)=0\)
=> \(abc\left(b+c\right)=0\)
Mà a;b;c là 3 số khác 0
=> \(abc\ne0\)
=> \(b+c=0\)
=> \(b=-c\)
\(a^2bc+ab^2c-abc^2=-4+2-\left(-2\right)=0\)
=> \(abc\left(a+b-c\right)=0\)
Mà \(abc\ne0\)
=> \(a+b-c=0\)
\(a^2bc-abc^2=-4-\left(-2\right)=-2\)
=> \(abc\left(a-c\right)=-2\)
Mà \(abc\ne0\)
=>\(a-c=-2\)
Có \(a+b-c=0\)
=> \(\left(a-c\right)+b=0\)
=> \(-2+b=0\)
=> \(b=2\)
\(b=-c=2\)=> \(c=-2\)
=> \(a-\left(-2\right)=-2\)
=> \(a+2=-2\)
=> \(a=-2-2=-4\).....................Mình cũng thấy cái này lạ lạ à nha....... Bạn mò thử đi, chắc ra -__-
Mỏi tay quáááá
vì (x+3)^2 luôn lớn hơn hoặc =0 và GTTĐ y-2 luôn lớn hơn hoặc =0 nên Giá trị NN của A sẽ xảy ra tại x+3=0 và y-2 =0 . vậy x=-3 và y=2 và GTNN của A là 2. mong bạn sẽ k cho mình
Bạn ơi máy cái này tìm GTNN thì làm sao mà tìm được ! Đề bạn sai rồi ! Đây mình làm theo tìm GTLN nha !
Bài 1 : Bài giải
\(A=\frac{5}{7}-\left|3x-2\right|\)
A đạt GTLN khi \(\left|3x-2\right|\) đạt GTNN.
Mà \(\left|3x-2\right|\ge0\) Dấu " = " xảy ra khi \(3x-2=0\) \(\Rightarrow\text{ }3x=2\) \(\Rightarrow\text{ }x=\frac{2}{3}\)
\(\Rightarrow\text{ }\frac{5}{7}-\left|3x-2\right|\le0\)
Vậy Max \(\frac{5}{7}-\left|3x-2\right|=\frac{5}{7}\) khi \(x=\frac{2}{3}\)
phần chứng minh sai đề
\(A=\left|x-500\right|+\left|x-300\right|\)
\(\ge\left|x-500+300-x\right|=200\)
\(\Rightarrow A\ge200\)
Dấu = khi \(\left(x-500\right)\left(x-300\right)\ge0\)\(\Rightarrow300\le x\le500\)
\(\Rightarrow\begin{cases}300\le x\le500\\\left(x-500\right)\left(x-300\right)=0\end{cases}\)\(\Rightarrow\begin{cases}x=500\\x=300\end{cases}\)
Vậy MinA=200 khi \(\begin{cases}x=500\\x=300\end{cases}\)