Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* n = 3k
A = 2ⁿ - 1 = 2^3k - 1 = 8^k - 1 = (8-1)[8^(k-1) + 8^(k-2) +..+ 8 + 1] = 7p chia hết cho 7
* n = 3k+1
A = 2^(3k+1) -1 = 2.2^3k - 1 = 2(8^k - 1) + 1 = 2*7p + 1 chia 7 dư 1
* n = 3k+2
A = 2^(3k+2) -1 = 4.8^k -1 = 4(8^k - 1) + 3 = 4*7p + 3 chia 7 dư 3
Tóm lại A = 2ⁿ -1 chia hết cho 7 khi và chỉ khi n = 3k (k nguyên dương)
Ta có:
\(\left(n+1\right).\left(n+2\right).\left(n+3\right)...\left(2n\right)=\frac{1.2.3...n\left(n+1\right).\left(n+2\right).\left(n+3\right)...\left(2n\right)}{1.2.3...n}\)
\(=\frac{1.3.5...\left(2n-1\right).\left(2.4.6...2n\right)}{1.2.3...n}=\frac{1.3.5...\left(2n-1\right).2^n.\left(1.2.3...n\right)}{1.2.3...n}\)
\(=1.3.5...\left(2n-1\right).2^n⋮2^n\left(đpcm\right)\)
Lúc này dễ dàng tìm được thương của phép chia là 1.3.5...(2n - 1)
n . ( n + 2 ) . ( n + 7 )
= n . n . n ( 2 + 7 )
= n3 ( 2 + 7 )
= n3 . 9
Vì n3 bắt buộc phải chia hết cho 3 và 9 chia hết cho 3
=> n . ( n + 2 ) . ( n + 7 ) sẽ chia hết cho 3 với mọi số tự nhiên
n.(n+2).(n+7)
=n.n.n.(2+7)
=n^3.(2+7)
=2^3.9
n^3 chia hết cho 3;9 nên n.(n+2).(2+7) xẽ chia hết cho 3 với mọi số tự nhiên
xét n=3k=>n(n+2)(n+7) chia hết cho 3(1)
xét n=3k+1=>n+2=3k+3=3(k+1)
=>n(n+2)(n+7) chia hết cho 3(2)
xét n=3k+2=>n+7=3k+9=3(k+3)
=>n(n+2)(n+7) chia hết cho 3(3)
từ (1);(2);(3)=>n(n+2)(n+7) chia hết cho 3
=>đpcm
a) Gọi a+4b là c, 10a+b là d.Ta có:
a+4b= c
10a+b = d
=> 3a+ 12b =3c
10a + b = d
=> 3c+d = 10a+3a+12b+b = 13a + 13b =13(a+b) => 3c + d chia hết cho 13
Mà: 3c+d chia hết cho 13
3c chia hết cho 13
=> d chia hết cho 13 hay 10a+ b chia hết cho 13
xét n chẵn=>n+4 chẵn
=>(n+1)(n+4) chia hết cho 2 (1)
xét n lẻ=>n+1 chẵn
=>(n+1)(n+4) chia hết cho 2 (2)
từ (1);(2)=>đpcm