Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(E=36^n+19^n-2^n\cdot2\)
Mặt khác: \(36\equiv19\equiv2\)(mod 17)
Do đó: \(VT\equiv2^n+2^n-2^n\cdot2\equiv0\)(mod 17)
Vậy .................
Tìm số dư khi chia A= \(a^{2n}+a^n+1\) cho \(a^2+a+1\) với mọi số tự nhiên n và a thuộc Z, a khác 1.
TH1: n = 3k , k là số tự nhiên.
Có: \(A=a^{6k}+a^{3k}+1=\left(a^{6k}-1\right)+\left(a^{3k}-1\right)+3\)
\(=\left(a^{3k}-1\right)\left(a^{3k}+1\right)+\left(a^{3k}-1\right)+3=\left(a^{3k}-1\right)\left(a^{3k}+2\right)+3\)
lại có: \(a^{3k}-1=\left(a^3\right)^k-1⋮a^3-1\) và \(a^3-1⋮a^2+a+1\)
=> \(a^{3k}-1⋮a^2+a+1\)
=> \(\left(a^{3k}-1\right)\left(a^{3k}+2\right)⋮a^2+a+1\)
=> \(A:a^2+a+1\) dư 3, với mọi a khác -2; -1; 0; 1.
TH2: n = 3k + 1, k là số tự nhiên.
Có: \(A=a^{6k+2}+a^{3k+1}+1=a^2\left(a^{6k}-1\right)+a\left(a^{3k}-1\right)+\left(a^2+a+1\right)\)
\(=a^2\left(a^{3k}-1\right)\left(a^{3k}+1\right)+a\left(a^{3k}-1\right)+\left(a^2+a+1\right)\)
\(=\left(a^{3k}-1\right)\left[a^2\left(a^{3k}+1\right)+a\right]+\left(a^2+a+1\right)⋮a^2+a+1\)
Vì \(a^{3k}-1⋮a^2+a+1;a^2+a+1⋮a^2+a+1\)
=> \(A⋮a^2+a+1\)
hay \(A:a^2+a+1\) dư 0
TH3: n = 3k +2, k là số tự nhiên
Có: \(A=a^{6k+4}+a^{3k+2}+1=a^4\left(a^{6k}-1\right)+a^2\left(a^{3k}-1\right)+\left(a^4+a^2+1\right)\)
\(=a^4\left(a^{3k}+1\right)\left(a^{3k}-1\right)+a^2\left(a^{3k}-1\right)+\left(a^4+2a^2+1\right)-a^2\)
\(=\left(a^{3k}-1\right)\left[a^4\left(a^{3k}+1\right)+a^2\right]+\left(a^2-a+1\right)\left(a^2+a+1\right)⋮a^2+a+1\)
=> \(A:a^2+a+1\) dư 0.
Kêt luận: Với n là số tự nhiên chia hết cho 3, a là số nguyên khác -2; -1 ; 0; 1 thì A chia cho a^2 +a +1 dư 3
n là số tự nhiên không chia hết cho 3, a là số nguyên bất kì thì A chia cho a^2 +a +a dư 0.
.
Giả sử E là số tự nhiên
Biến đổi E ta có :
\(E=\frac{3n^2}{2n^2+n-1}+\frac{1}{n+1}=\frac{3n^2}{\left(n+1\right)\left(2n-1\right)}+\frac{2n-1}{\left(n+1\right)\left(2n-1\right)}=\frac{3n^2+2n-1}{\left(n+1\right)\left(2n-1\right)}\)
\(=\frac{\left(n+1\right)\left(3n-1\right)}{\left(n+1\right)\left(2n-1\right)}=\frac{3n-1}{2n-1}\)
Do E là số tự nhiên \(\Rightarrow\left(3n-1\right)⋮\left(2n-1\right)\)
\(\Leftrightarrow2\left(3n-1\right)⋮\left(2n-1\right)\Rightarrow\left[2\left(3n-1\right)-3\left(2n-1\right)\right]⋮2n-1\)
\(\Leftrightarrow\left(6n-2-6n+3\right)⋮\left(2n-1\right)\Leftrightarrow1⋮\left(2n-1\right)\)
\(\Rightarrow2n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Xét \(2n-1=1\Rightarrow n=1\left(KTM:n>1;\text{loại}\right)\)
Xét \(2n-1=-1\Rightarrow n=0\left(KTM:n>1;\text{loại}\right)\)
Vậy ko có số tự nhiên n > 1 nào để \(\left(3n-1\right)⋮\left(2n-1\right)\) hay 3n - 1 ko chia hết cho 2n - 1
=> điều giả sử là sai hay E ko thể là số tự nhiên (đpcm)