Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^3-n\)= \(n\left(n^2-1\right)\)= \(\left(n-1\right)n\left(n+1\right)\)
Do (n-1)n(n+1) la h cua 3 so tự nhiên liên tiếp nên chia het cho 2 va 3
mà (2,3) =1 nen h chia het cho 6
Lại có n lẻ nên tích sẽ có 1 số chia hết cho 4
=> (n-1)n(n+1) chia hết cho 4*6 = 24
Hay \(n^3-1\)chia hết cho 24 với mọi số tự nhiên n lẻ
Đúng thì
Theo mình thì khi ta có a chia hết c, b chia hết cho c và (a,b)=1 thì ta mới có thể kết luận là ab chia hết cho c.
Ví dụ: 12 chia hết cho 4, 12 chia hết cho 6 nhưng 12 không chia hết cho 24.
Mình chỉ biết như thế còn không biết cách giải mong các bạn giúp đỡ.
Vì n lẻ
=> n = 2k + 1 ( với k laf số tự nhiên )
\(\Rightarrow n^3-n=\left(2k+1\right)^3-\left(2k+1\right)\)
\(\Rightarrow n^3-n=\left(2k+1\right)\left[\left(2k+1\right)^2-1\right]\)
\(\Rightarrow n^3-n=\left(2k+1\right)\left(2k+2\right)2k\)
Vì 2k ; 2k + 1 ; 2k + 2 là 3 số tự nhiên liên tiếp .
\(\Rightarrow\left(2k+1\right)\left(2k+2\right)2k\) chia hết cho 3
\(\Rightarrow n^3-n⋮3\)
Mặt khác : \(n^3-n=\left(2k+1\right)\left(2k+2\right)2k\)
\(\Rightarrow n^3-n=\left(2k+1\right)2\left(k+1\right)2k\)
\(\Rightarrow n^3-n=\left(2k+1\right)4\left(k+1\right)k\)
Xét thấy k và k+1 là 2 số tự nhiên liên tiếp .
=> k(k+1) chia hết cho 2
\(\Rightarrow\left(2k+1\right)4\left(k+1\right)k⋮8\)
\(\Rightarrow n^3-n⋮8\)
Mà (3;8) = 1
=> n3 - n chia hết cho 24 ( đpcm )
A = n^2 ( n+ 3 ) - ( n+ 3 )
= ( n^2 - 1 )(n+ 3 )
= ( n+ 1 )(n- 1 )(n + 3)
Vì n lẻ => n = 2k+ 1 thay vào ta có :
A = ( 2k + 1 + 1 )(2k+1 - 1 )(2k + 1 + 3) = (2k+2).2k (2k+4) = 2(k+1).2k . 2(k+2) = 8k(k+1)(k+2)
Luôn luôn chia hết cho 8 mới mọi n lẻ
=> A chia hết cho 8
Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2)
= n^2 (n^4 – 1 + n^2 – 1)
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1]
= n^2 (n^2 – 1)(n^2 + 2)
= n.n.(n – 1)(n + 1)(n^2 + 2)
+ Nếu n chẳn ta có n = 2k (k thuộc N)
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1)
Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2)
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.
\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
n lẻ
=> n - 1 và n + 1 chẵn
Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8
=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)
A = n3 + 3n2 - n - 3
A = n2.(n + 3) - (n + 3)
A = (n + 3).(n2 - 1)
A = (n + 3).(n - 1).(n + 1)
Vì n lẻ nên n + 3 chẵn; n - 1 chẵn; n + 1 chẵn
=> A = (n + 3).(n - 1).(n + 1) là tích 3 số chẵn, chia hết cho 2 (đpcm)
\(A=n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
Vì n lẻ nên n có dạng: \(n=2k+1\left(\forall k\in N\right)\)
\(\Rightarrow A=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right).2k.\left(2k+2\right)\)
\(=2\left(k+2\right).2k.2\left(k+1\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Mà 8k(k+1)(k+2)\(⋮8\forall k\)
Nên \(A⋮8\)
Đặt đa thức là M
\(\Rightarrow M=n^2\left(n^6-n^4-n^2+1\right)\)
\(\Rightarrow M=n^2\left[n^4\left(n^2-1\right)-\left(n^2-1\right)\right]\)
\(\Rightarrow M=n^2\left(n^2-1\right)\left(n^4-1\right)\)
\(\Rightarrow M=n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\left(n-1\right)\left(n+1\right)\)
Ta có
n(n - 1)(n+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 3
\(\Rightarrow\left[n\left(n-1\right)\left(n+1\right)\right]\left[n\left(n-1\right)\left(n+1\right)\right]\) chia hết cho 9
=> M chia hết cho 9
Mặt khác
Vì n là số lẻ nên n - 1 và n+1 là số chẵn
=> (n - 1)(n+1) chia hết cho 8
\(n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n+1\right)\left(n-1\right)\) chia hết cho 128
=> M chia hết cho 128
Mà (9;128)=1
=> M chia hết cho 9x128=1152 ( đpcm )
n3-n=n(n-1)(n+1)
n(n-1) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2
n lẻ => n+1 chẵn n-1 chẵn mà tích 2 số chẵn chia hết cho 4 =>n(n-1)(n+1) chia hết cho 4
Ta thấy trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 =>n(n-1)(n+1) chia hết cho 3
=>n(n-1)(n+1) chia hết cho 2.3.4=24(ĐPCM)