Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chỉ cần tách các tổng thành tích thôi em nhé :)
a. \(8.2^n+2^{n+1}=8.2^n+2.2^n=10.2^n\) có tận cùng là chữ số 0.
b. \(A=27.3^n-2.3^n+32.2^n-7.2^n=25.3^n+25.2^n=25\left(3^n+2^n\right)\) nên A chia hết 25.
a) Ta có 3n+2-2n+2+3n-2n=(...34)n x32-(...24)n x22+(...34)n-(...24)n
= (...81)nx9-(...16)nx4+(...81)n -(...16)n
=(...9)n-(...4)n+(..1)n-(...6)n
=(....0)n Có chử số tận cùng là 0 nên chia hết cho 10
Vậy...
1, Ta có: 3n+2 - 2n+2 + 3n - 2n
= 3n( 32 +1) - 2n(22 + 1) = 10.3n - 5.2n
do n nguyên dương nên : 10.3n chia hết cho 10 và 5.2n chia hết cho 10
Vậy 3n+2 - 2n+2 + 3n - 2n chia hết cho 10 với mọi n thuộc N*
1) Ta có: A = 3n+2 - 2n+2 + 3n - 2n
=> A = 3n+2 + 3n - (2n+1 + 2n)
=> A = 3n(32 + 1) - 2n(22 + 1)
=> A = 3n.10 - 2n.5
ta thấy : 2nlà 1 số chẵn => 2n.5 \(⋮10\)
3n.10\(⋮10\)
=> \(A⋮10\) với mọi n E N* (đpcm)
2) a) ta có:
8.2n + 2n+1 = 2n( 8 + 2 ) = 2n.10 \(⋮10\)
=> 8.2n + 2n+1 có tận cùng = 0
b) ta có:
3n+3 - 2.3n + 2n+5 - 7.2n = 3n(33 - 2) + 2n(25 - 7)
= \(3^n.25-2^n.25\)
ta thấy: \(3^n.25⋮25\\ 2^n.25⋮25\\ \Rightarrow3^n.25+2^n.25⋮25\)
vậy 3n+3 - 2.3n + 2n+5 - 7.2n chia hết cho 25
a) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)
\(=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=\left(3^n.10\right)-\left(2^{n-1}.2.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)
Do: 3n . 10 chia hết cho 10 và 2n - 1 . 10 chia hết cho 10
=> ( 3n . 10 ) - ( 2n - 1 . 10 ) chia hết cho 10 => 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10
a = 2\(^{n+1}\)(4+1) =10.2\(^n\) tận cùng =0
b= 3\(^n\)(27 -2) + 2\(^n\)(32-7)
= 25 (3\(^n\)+2\(^n\)) chia hết cho 25
a.8.2n+2n+1=2n(8+2)=2n.10 có tận cùng là 0
=>đpcm
b.3n+3-2.3n+2n+5-7.2n=3n(27-2)+2n(32-7)
=25.3n+25.2n=25(3n+2n) chia hết cho 25
=>đpcm
Đặt A=\(3^{n+2}-2^{n+2}+3^n-2^n\)
=\(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
=\(3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
=\(3^n.10-2^n.5\)
Có 10 chia hết cho 10 =>\(3^n.10\)chia hết cho 10 (1)
Có \(2^n\)luôn chia hết cho 2 =>\(2^n.5\)chia hết cho 10 (2)
Từ (1) và (2) =>\(\left(3^n.10-2^n.5\right)\)chia hết cho 10
=>A chia hết cho 10
=>\(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho 10 (đpcm)
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\times10-2^n\times5\)
\(=3^n\times10-2^{n-1}\times2\times5\)
\(=3^n\times10-2^{n-1}\times10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Đến đây bn kết nốt
Chúc bn học tốt
Ta có : 3n + 2 - 2n + 2 + 3n - 2n
= (3n + 2 + 3n) - (2n + 2 + 2n)
= 3n(32 + 1) - 2n - 1(23 + 2)
= 3n.10 - 2n - 1.10
= 10.(3n - 2n - 1)
Mà 3n - 2n - 1 thuộc Z
Nên 10.(3n - 2n - 1) chia hết cho 10
Vậy 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10