K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2017

ĐKXĐ : \(a+b\ne0;a+c\ne0;b+c\ne0.\)

Từ \(\left(1\right)\Leftrightarrow\left(\frac{x-ab}{a+b}-c\right)+\left(\frac{x-ac}{a+c}-b\right)+\left(\frac{x-bc}{b+c}-a\right)=0\)

\(\Leftrightarrow\frac{x-ab-ac-bc}{a+b}+\frac{x-ac-ab-bc}{a+c}+\frac{a-bc-ab-ac}{b+c}=0\)

\(\Leftrightarrow\left(x-ab-bc-ca\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=0\)

\(\left(1\right)\) có vô số nghiệm \(\Leftrightarrow\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=0.\left(2\right)\)

Chẳng hạn ta chọn \(a=1,b=1.\)Để ( 2 ) xảy ra ta chọn c sao cho :

\(\frac{1}{2}+\frac{1}{1+c}+\frac{1}{1+c}=0\Leftrightarrow\frac{2}{1+c}=-\frac{1}{2}\Leftrightarrow c=-5.\)

Như vậy \(\left(1\right)\) có vô số nghiệm , chẳng hạn khi \(a=1,b=1,c=-5.\)

2 tháng 1 2017

....................................................................................................................................................................................................................................

1 tháng 2 2017

Giải

Điều kiện xác định phương trình:

\(a+b\ne0\) ; \(a+c\ne0\) ; \(b+c\ne0\)

\(\frac{x-ab}{a+b}+\frac{x-ac}{a+c}+\frac{x-bc}{b+c}=a+b+c\)

\(\Leftrightarrow\left(\frac{x-ab}{a+b}-c\right)+\left(\frac{x-ac}{a+c}-b\right)+\left(\frac{x-bc}{b+c}-a\right)=0\)

\(\Leftrightarrow\frac{x-ab-ac-bc}{a+b}+\frac{x-ac-cb-bc}{a+c}+\frac{x-bc-ab-ac}{b+c}=0\)

\(\Leftrightarrow\left(x-ab-bc-ca\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=0\)

\(\Rightarrow\) Phương trình có vô số nghiệm \(\Leftrightarrow\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=0\)

Chẳng hạn ta chọn a = 1 ; b = 1. Để \(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=0\) xảy ra ta chọn c sao cho:

\(\frac{1}{2}+\frac{1}{1+c}+\frac{1}{1+c}=0\Leftrightarrow\frac{2}{1+c}=\frac{-1}{2}\Leftrightarrow c=-5\)

Như vậy phương trình có vô số nghiệm, chẳng hạn khi a = 1 ; b = 1 ; c = -5

7 tháng 12 2017

Đây nhé: https://olm.vn/hoi-dap/question/77888.html

11 tháng 4 2017

cong lai nhu phep cong tuy hoi do nhung van ra

21 tháng 12 2016

hay

 

12 tháng 1 2017

tích cho tớ nha cậu, mơn nhìu ạk

12 tháng 1 2017

Ai biết cách làm thì nhanh tay giải giùm mình nhé!!!!!!!!!!!!

mk đang cần gấp....<3<3<3<3<3<3

9 tháng 5 2017

Câu 2/

\(\frac{a^2+bc}{a^2\left(b+c\right)}+\frac{b^2+ca}{b^2\left(c+a\right)}+\frac{c^2+ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{a^2+bc}{a^2\left(b+c\right)}-\frac{1}{a}+\frac{b^2+ca}{b^2\left(c+a\right)}-\frac{1}{b}+\frac{c^2+ab}{c^2\left(a+b\right)}-\frac{1}{c}\ge0\)

\(\Leftrightarrow\frac{\left(b-a\right)\left(c-a\right)}{a^2\left(b+c\right)}+\frac{\left(a-b\right)\left(c-b\right)}{b^2\left(c+a\right)}+\frac{\left(a-c\right)\left(b-c\right)}{c^2\left(a+b\right)}\ge0\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-a^2b^4c^2-a^2b^2c^4\ge0\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4\ge a^4b^2c^2+a^2b^4c^2+a^2b^2c^4\left(1\right)\)

Ma ta có: \(\hept{\begin{cases}a^4b^4+b^4c^4\ge2a^2b^4c^2\left(2\right)\\b^4c^4+c^4a^4\ge2a^2b^2c^4\left(3\right)\\c^4a^4+a^4b^4\ge2a^4b^2c^2\left(4\right)\end{cases}}\)

Cộng (2), (3), (4) vế theo vế rồi rút gọn cho 2 ta được điều phải chứng minh là đúng.

PS: Nếu nghĩ được cách khác đơn giản hơn sẽ chép lên cho b sau. Tạm cách này đã.

9 tháng 5 2017

tks bn nhé, bn giúp mk câu 1 được ko