Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(x=y=z\)
b/ \(\Leftrightarrow x^2-2x+1+y^2-2y+1+z^2-2z+1\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(x=y=z=1\)
c/ BĐT sai
Giải:
\(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)+\left(y^2-2yz+z^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\ge0\) (luôn đúng với mọi x, y, z)
Vậy ...
ta có : \(\left\{{}\begin{matrix}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2zx\end{matrix}\right.\)
cộng quế theo quế ta có : \(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx\ge0\forall x;y;z\left(đpcm\right)\)
\(\frac{x^3}{y}+xy\ge2x^2\); \(\frac{y^3}{z}+yz\ge2y^2\); \(\frac{z^3}{x}+xz\ge2z^2\)
\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}+xy+xz+yz\ge2\left(x^2+y^2+z^2\right)\)
Mặt khác ta có BĐT: \(x^2+y^2+z^2\ge xy+xz+yz\)
\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}+xy+xz+yz\ge2\left(xy+xz+yz\right)\)
\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge xy+xz+yz\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z\)
#)Góp ý :
Mời bạn tham khảo :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Mình sẽ gửi link này về chat riêng cho bạn !
Tham khảo qua đây nè :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017
tk cho mk nhé
ta có : \(x^2+y^2+z^2=xy+yz+zx\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\) \(\Leftrightarrow x=y=z\left(đpcm\right)\)
\(\frac{1}{x+y+z}+\frac{1}{3}=\frac{1}{x+y+z}+\frac{1}{3xyz}\ge\frac{2}{\sqrt{3xyz\left(x+y+z\right)}}\ge\frac{2}{xy+yz+zx}\)
Dấu "=" xảy ra khi \(x=y=z=1\)
\(x^2+y^2+z^2\ge xy-xz+yz\)
\(\Rightarrow2x^2+2y^2+2z^2\ge2xy-2xz+2yz\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy+2xz-2yz\ge0\)
\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(x^2+2xz+z^2\right)+\left(z^2-2yz+y^2\right)\ge0\)
\(\Rightarrow\left(x-y\right)^2+\left(x+z\right)^2+\left(z-y\right)^2\ge0\)( luôn đúng )
\(\Rightarrow x^2+y^2+z^2\ge xy-xz+yz\)( đúng với mọi x,y,z )
Dấu bằng sảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x+z\right)^2=0\\\left(z-y\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y=0\\x+z=0\\z-y=0\end{cases}\Rightarrow\hept{\begin{cases}y=x\\x+z=0\\y=z\end{cases}}}}\)
\(\Rightarrow\hept{\begin{cases}x+z=0\\x=z\end{cases}\Rightarrow x=y=z=0}\)