K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

Đề đúng : Chứng minh : \(\frac{x^4+4}{x\left(x^2+2\right)-2x^2-\left(x-1\right)^2-1}=\frac{x^2+2x+2}{x-1}\)

Điều kiện : \(x\ne1\)

Phân tích : \(x^4+4=\left(x^4+4x^2+4\right)-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

\(x\left(x^2+2\right)-2x^2-\left(x-1\right)^2-1=x^3+2x-2x^2-\left(x^2-2x+1\right)-1\)

\(=x^3-3x^2+4x-2=\left(x^3-3x^2+3x-1\right)+\left(x-1\right)=\left(x-1\right)^3+\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-2x+2\right)\)

Suy ra : \(\frac{x^4+4}{x\left(x^2+2\right)-2x^2-\left(x-1\right)^2-1}=\frac{\left(x^2-2x+2\right)\left(x^2+2x+2\right)}{\left(x-1\right)\left(x^2-2x+2\right)}=\frac{x^2+2x+2}{x-1}\)

30 tháng 3 2019

\(a,\frac{1}{2}x+\frac{1}{2}+\frac{1}{4}x+\frac{3}{4}=3-\frac{1}{3}x-\frac{2}{3}\)

\(\frac{13}{12}x=\frac{13}{12}\Rightarrow x=1\)

30 tháng 3 2019

\(b,\left(2x+1\right)^2=\left(x-1\right)^2\Rightarrow\orbr{\begin{cases}2x+1=x-1\\2x+1=1-x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=0\end{cases}}}\)

11 tháng 11 2016

 đó chính là -4 minh khong muon giai ra ta lau lam ban

11 tháng 11 2016

rút 4 ra ngoài nhan bạn  4(2(x+1/x)^2+(x^2+1/x^2)^2-(x^2+1/x^2)(x+1/x)^2=(x+4)^2 

mik xét cái này cho dễ nhìn nhan 

2(x+1/x)^2-(x^2+1/x^2)(x+1/x)^2

= (x+1/x)^2(2-x^2-1/x^2)

= -(x+1/x)^2(x^2-2+1/x^2)

= -(x+1/x)^2(x-1/x)^2=-(x^2-1/x^2)^2

thế ở trên ta có 

4(-(x^2-1/x^2)^2+(x^2+1/x^2)^2)=(x+4)^2 

4(-x^4+2-1/x^4+x^4+2+1/x^4)=x^2+8x+16

4.4=x^2+8x+16 

suy ra x^2+8x=0 

x(x+8)=0

suy ra x=0 hoặc x=-8 

mak nhìn để bài thì x=0 ko được nên x=-8

9 tháng 3 2019

a,<=>\(\frac{20\left(1-2x\right)+6x}{12}\)=\(\frac{9\left(x-5\right)-24}{12}\)

=> 20-40x+6x = 9x-45-24

<=> -40x+6x-9x = -20-45-24

<=> -43x = -89

<=> x = \(\frac{89}{43}\)

c,ĐKXĐ :x\(\ne\pm1\)

<=>\(\frac{3\left(x+1\right)}{x^2+1}\) = -\(\frac{3x+2}{x^2+1}\) - \(\frac{4\left(x-1\right)}{x^2+1}\)

=> 3x+1 = -3x-2-4x+4

<=>3x+3x+4x = -1-2+4

<=> 10x = 1

<=> x =\(\frac{1}{10}\)(TMĐK)

10 tháng 3 2020

a,\(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)

Ta có: \(x^2+5\ge0\) (vô lí)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-6\end{cases}}\)

Vậy ....

c, \(4x^2\left(x-1\right)-x+1=0\)

\(\Leftrightarrow4x^3-4x^2-x+1=0\)

\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(4x^2-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x^2-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x^2=1\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=\frac{1}{4}\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\frac{1}{2}\\x=1\end{cases}}\)

Vậy ....

10 tháng 3 2020

\(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)

ĐKXĐ: \(x\ne1,x\ne-3\)

PT đã cho \(\Leftrightarrow\frac{\left(x+2\right).\left(x-1\right)-\left(x+1\right).\left(x+3\right)}{\left(x+3\right).\left(x-1\right)}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{\left(x+2\right).\left(x-1\right)-\left(x+1\right).\left(x+3\right)}{\left(x+3\right).\left(x-1\right)}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)

\(\Rightarrow x^2+x-2-x^2-4x-3=4\Leftrightarrow3x=-1\Leftrightarrow x=\frac{-1}{3}\)

8 tháng 1 2020

1.

\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)

\(MC:12\)

Quy đồng :

\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)

\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)

\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)

\(\Leftrightarrow6x+9-3x=-4-9+16\)

\(\Leftrightarrow-7x=3\)

\(\Leftrightarrow x=\frac{-3}{7}\)

2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)

\(MC:20\)

Quy đồng :

\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)

\(\Leftrightarrow30x+15-20=15x-2\)

\(\Leftrightarrow15x=3\)

\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)

16 tháng 8 2019

\(a.\Leftrightarrow x^2+x-6+2x^2+4x+2=x^2-6x+9-2x^2+4x\)

\(\Leftrightarrow4x^2+7x-13=0\)(pt vô nghiệm)

\(b.\Leftrightarrow x^3+3x^2+3x+1-x^2+2x+8=x^3-8+2x^2\)

\(\Leftrightarrow5x=-17\Rightarrow x=\frac{-17}{5}\)

Đặt \(t=x^2+2x+2\left(t\ge1\right)\)

\(c.\Leftrightarrow\frac{t-1}{t}+\frac{t}{t+1}=\frac{7}{6}\)\(\Leftrightarrow\frac{t^2-1+t^2}{t^2+t}=\frac{7}{6}\)\(\Leftrightarrow12t^2-6=7t^2+7t\)

\(\Leftrightarrow5t^2-7t-6=0\Rightarrow\orbr{\begin{cases}t=2\left(tm\right)\\t=\frac{-3}{5}\left(l\right)\end{cases}}\)

\(\Rightarrow x^2+2x+2=2\Rightarrow x=-2\)

10 tháng 3 2020

\(\left(\frac{x-1}{x+2}\right)^2-4\left(\frac{x^2-1}{x^2-4}\right)^2+3\left(\frac{x+1}{x-2}\right)^2=0\left(1\right)\)

\(ĐKXĐ:x\ne\pm2\)

Đặt \(\frac{x-1}{x+2}=a;\frac{x+1}{x-2}=b\)

=> Phương trình (1) <=> \(a^2-4ab+3b^2=0\)

\(\Leftrightarrow a^2-3ab-ab+3b^2=0\)

\(\Leftrightarrow a\left(a-b\right)-3b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-3b=0\\a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=3b\\a=b\end{cases}}}\)

=>  \(b=0;a=0\)

Bạn cùng trường :">