Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< \sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(P=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{2005\sqrt{2004}}\)
\(\Rightarrow P< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}}\right)\)
\(\Rightarrow P< 2\left(1-\frac{1}{\sqrt{2005}}\right)< 2.1=2\)
Với mọi n >1 ta đều có: \(\sqrt{n+1}>\sqrt{n}>\sqrt{n-1}>0\Rightarrow\sqrt{n+1}+\sqrt{n}>2\sqrt{n}>\sqrt{n}+\sqrt{n-1}>0\)
\(\Rightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}< \frac{1}{2\sqrt{n}}< \frac{1}{\sqrt{n}+\sqrt{n-1}}\)\(\Rightarrow\frac{\left(n+1\right)-n}{\sqrt{n+1}+\sqrt{n}}< \frac{1}{2\sqrt{n}}< \frac{n-\left(n-1\right)}{\sqrt{n}+\sqrt{n-1}}\)
\(\Rightarrow\sqrt{n+1}-\sqrt{n}< \frac{1}{2\sqrt{n}}< \sqrt{n}-\sqrt{n-1}\)
\(\Rightarrow2\sqrt{n+1}-2\sqrt{n}< \frac{1}{\sqrt{n}}< 2\sqrt{n}-2\sqrt{n-1}\)đpcm.
Từ đó ta có:
\(2\sqrt{2}-2< \frac{1}{\sqrt{1}}=1;\)
\(2\sqrt{3}-2\sqrt{2}< \frac{1}{\sqrt{2}}< 2\sqrt{2}-2;\)
\(2\sqrt{4}-2\sqrt{3}< \frac{1}{\sqrt{3}}< 2\sqrt{3}-2\sqrt{2};\)
...
\(2\sqrt{1006010}-2\sqrt{1006009}< \frac{1}{\sqrt{1006009}}< 2\sqrt{1006009}-2\sqrt{1006008};\)
Cộng từng vế ta được:
\(2\sqrt{1006009}-2< 2\sqrt{1006010}-2< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{1006009}}< 2\cdot1003-1\)
\(2004< 2\sqrt{1006010}-2< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{1006009}}< 2005\)đpcm
Một bất đẳng thức HAY và rất chặt! 1 tổng các phân thức của căn thức bị chặn bởi 2 số tự nhiên liên tiếp!
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n}}{n}-\frac{\sqrt{n+1}}{n+1}\)
\(\Rightarrow S=\frac{1}{1}-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}+...+\frac{\sqrt{2004}}{2004}-\frac{\sqrt{2005}}{2005}\)
\(=1-\frac{\sqrt{2005}}{2005}\)
\(\forall n\inℕ^∗\)ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) (*)
Thay n=1; n=2; n=3; .....; n=2004 Ta có:
\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}}\)
\(=1-\frac{1}{\sqrt{2005}}\)
Ta có
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n^2+n}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Từ đó ta có
\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}}\)
\(=1-\frac{1}{\sqrt{2005}}=\frac{\sqrt{2005}-1}{\sqrt{2005}}\)
Lời giải:
Xét số hạng tổng quát \(\frac{1}{(n+1)\sqrt{n}}\):
\(\frac{1}{(n+1)\sqrt{n}}=\frac{(n+1)-n}{(n+1)\sqrt{n}}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}.\sqrt{n(n+1)}}\)
\(< \frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\frac{\sqrt{n+1}+\sqrt{n}}{2}.\sqrt{n(n+1)}}\)
\(\Leftrightarrow \frac{1}{(n+1)\sqrt{n}}< 2.\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Cho $n=1,2,....,2004$
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{2005\sqrt{2004}}< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}}\right)\)
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{2005\sqrt{2004}}< 2(1-\frac{1}{\sqrt{2005}})< 2\) (đpcm)