Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}.\)
Chứng minh rằng:\(B< \frac{1}{4}.\)
2B=\(\frac{2}{1.2.3}\)+.....+\(\frac{2}{18.19.20}\)
2B=\(\frac{1}{1.2}\)-\(\frac{1}{2.3}\)+\(\frac{1}{2.3}\)-\(\frac{1}{3.4}\).......+\(\frac{1}{18.19}\)-\(\frac{1}{19.20}\)
2B=\(\frac{1}{1.2}\)-\(\frac{1}{19.20}\)
B=\(\frac{1}{1.2}\):2-\(\frac{1}{19.20}\):2
B=\(\frac{1}{1.2}\).\(\frac{1}{2}\)-\(\frac{1}{19.20}\).\(\frac{1}{2}\)
=\(\frac{1}{4}\)-\(\frac{1}{19.20.2}\)<\(\frac{1}{4}\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\)
\(2B=\frac{1}{1.2}-\frac{1}{19.20}\)
\(B=\left(\frac{1}{2}-\frac{1}{19.20}\right):2\)
\(B=\frac{189}{760}\)
$\frac{4}{n\left(n+2\right)\left(n+4\right)}=\frac{n+4-n}{n\left(n+2\right)\left(n+4\right)}=\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+2\right)\left(n+4\right)}$4n(n+2)(n+4) =n+4−nn(n+2)(n+4) =1n(n+2) −1(n+2)(n+4) $\frac{B}{9}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}=\frac{1}{3}-\frac{1}{27.29}<\frac{1}{3}$B9 =11.3 −13.5 +13.5 −15.7 +...+125.27 −127.29 =13 −127.29 <13 $\Rightarrow B<3$
Bài 1 \(F=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{7.8.9}+\frac{1}{8.9.10}\)
\(2F=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{7.8}-\frac{1}{8.9}+\frac{1}{8.9}-\frac{1}{9.10}\)
\(2F=\frac{1}{1.2}-\frac{1}{9.10}\)\(=\frac{44}{90}\)
\(F=\frac{11}{45}\)
Vậy \(F=\frac{11}{45}\)
Bài 2 :
\(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)
\(\Rightarrow\)\(\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}\)
\(\Rightarrow\)\(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}< B< \frac{1}{2.3}+..+\frac{1}{8.9}\)
\(\Rightarrow\)\(\frac{1}{3}-\frac{1}{10}< B< \frac{1}{2}-\frac{1}{9}\)
\(\Rightarrow\)\(\frac{7}{30}\)\(< \frac{7}{18}\left(đpcm\right)\)
Hết nha bn.Mk ik ngủ.Chúc bạn học tốt
2A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ... + 1/18.19.20
2A = 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 +...+1/18.19 - 1/19.20
2A = 1/1.2 - 1/19.20
2A = 1/2 - 1/19.20
A = (1/2 - 1/19.20) : 2
A = 1/4 - 1/(19.20.2)
MÀ 1/(19.20.2) > 0
nên A<1/4
3. \(M=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{10.11.12}\)
\(\Leftrightarrow2M=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{10.11.12}\)
\(\Leftrightarrow2M=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{10.11}-\frac{1}{11.12}\)
\(\Leftrightarrow2M=\frac{1}{1.2}-\frac{1}{11.12}\)
\(\Leftrightarrow2M=\frac{1}{2}-\frac{1}{132}\)
\(\Leftrightarrow2M=\frac{65}{132}\)
\(\Leftrightarrow M=\frac{65}{132}\div2\)
\(\Leftrightarrow M=\frac{65}{264}\)
1\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{899}{900}\)
\(\Leftrightarrow A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{29.31}{30.30}\)
\(\Leftrightarrow A=\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}\)
\(\Leftrightarrow A=\frac{\left(1.2.3....29\right)\left(3.4.5...31\right)}{\left(2.3.4...30\right)\left(2.3.4...30\right)}\)
\(\Leftrightarrow A=\frac{1.31}{30.2}\)
\(\Leftrightarrow A=\frac{31}{60}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{2.3}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{19.20}\right)=\frac{1}{4}-\frac{1}{2.19.20}<\frac{1}{4}\)
B=\(\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+...+\frac{36}{25.27.29}< 3\)
=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+............+\frac{1}{18.19.20}\)
=\(\frac{2}{1.2.3.2}+\frac{2}{2.3.4.2}+............+\frac{2}{18.19.20.2}\)
=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}............+\frac{1}{18.19}-\frac{1}{19.20}\)
=\(\frac{1}{1.2}-\frac{1}{19.20}\)
=\(\frac{189}{380}\)
đặt A=1/1.2.3+1/2.3.4+..+1/18.19.20
=1/2(2/1.2.3+1/2.3.4+...+1/18.19.20)
=1/2.(1/1.2-1/2.3+1/2.3-1/3.4+...+1/18.19-1/19.20)
=1/2(1/1.2-1/19.20)
=1/2.1/20
=1/40
Mà 1/40<1/4
=>A<1/4
=