Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d/ \(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)
e/ \(\Leftrightarrow a^6+b^6+a^5b+ab^5\ge a^6+b^5+a^4b^2+a^2b^4\)
\(\Leftrightarrow a^5b-a^4b^2+ab^5-a^2b^4\ge0\)
\(\Leftrightarrow a^4b\left(a-b\right)-ab^4\left(a-b\right)\ge0\)
\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)
f/ \(\frac{a^6}{b^2}+a^2b^2\ge2\sqrt{\frac{a^8b^2}{b^2}}=2a^4\) ; \(\frac{b^6}{a^2}+a^2b^2\ge2b^4\)
\(\Rightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge2a^4+2b^4-2a^2b^2\)
\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^4+b^4-2a^2b^2\right)\)
\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^2-b^2\right)^2\ge a^4+b^4\)
a/ \(VT=a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\)
\(VT=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2\)
\(VT\ge6\sqrt[6]{a^6b^6c^6}=6\left|abc\right|\ge6abc\)
Dấu "=" xảy ra khi \(a=b=c=1\)
b/ \(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)
c/ \(\Leftrightarrow\frac{a^3+b^3}{2}\ge\frac{a^3+b^3+3a^2b+3ab^2}{8}\)
\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b\)
a.
\(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
(luôn đúng)
b. Áp dụng BĐT \(x^2+y^2\ge2xy\)
\(a^2+b^2\ge2ab,a^2+1\ge2a,b^2+1\ge2b\)\(\Rightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\Leftrightarrow a^2+b^2+1\ge ab+a+b\)
c. Tương tự câu b
Áp dụng BĐT Cô si ta có
i. \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},\frac{1}{b}+\frac{1}{c}\ge\frac{2}{\sqrt{bc}},\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ca}}\)
\(\Rightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)
k. Tương tự câu i
a/ BĐT sai, với \(c=0\Rightarrow\frac{a}{b}< \frac{a}{b}\) (vô lý)
b/ \(\Leftrightarrow\frac{a^2}{4}+b^2+c^2-ab+ac-2bc\ge0\)
\(\Leftrightarrow\left(\frac{a}{2}-b+c\right)^2\ge0\) (luôn đúng)
c/ Bạn coi lại đề, trong ngoặc bên phải là \(a^2b\) hay \(ab^2\)?
d/ \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Leftrightarrow2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}\ge0\)
\(\Leftrightarrow a-2\sqrt{ab}+b+b-2\sqrt{bc}+c+c-2\sqrt{ca}+a\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)
e/ Thiếu điều kiện, BĐT này chỉ đúng khi \(a+b\ge0\) (hoặc a;b không âm)
c) theo bđt cauchy ta có
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+1\ge2b\\a^2+1\ge2a\end{matrix}\right.\)
cộng hết lại rút 2 đi \(\Rightarrowđpcm\)
\(a+b+c+d+e\ge a\left(b+c+d+e\right)\)
\(\Leftrightarrow\left(a-kb\right)^2+\left(a-kc\right)^2+\left(a-kd\right)^2+\left(a-ke\right)^2\ge0\)
Ta chọn \(k=2\)hay nhân 2 vế với 4
*Xét hiệu 2 vế bất đẳng thức.
\(a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)
\(=\frac{4\left(a^2+b^2+c^2+d^2+e^2\right)-4\left(ab+ac+ad+ae\right)}{4}\)
\(=\frac{\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)}{4}\)
\(=\frac{\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2}{4}\ge0\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)
Đẳng thức xảy ra khi\(a=2b=2c=2d=2e\)
Giả sử cả 2 BĐT trên đều đúng
Cộng theo vế ta được
\(a^2+b^2+c^2+d^2+e^2< a\left(b+c+d+e\right)\)
\(\Leftrightarrow4\left(a^2+b^2+c^2+d^2+e^2\right)< 4a\left(b+c+d+e\right)\)
\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4ae+4e^2< 0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2< 0\) (vô lý)
Vậy điều giả sử sai
Nói cách khác, 1 trong 2 BĐT đã cho ở giả thiết là sai.