Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để 2n - 3 / 2n + 2 là phân số tối giản thì ƯC ( 2n - 3 , 2n + 2 ) = 1
=> 2n - 3 và 2n + 2 là hai số nguyên tố cùng nhau
Làm đến đây mik xin chịu
Ta gọi UWCLN của 2n-1 và 4n+2 là d
Ta có 2n-1 chia het cho d vậy 4n-2 chia hết cho d
4n+2 chia hết cho d vậy 4n+2-4n-2 chia het cho d
Vậy 4 chia hết cho d nên d=1 để 2n-1/4n+2 là tối giản
Vậy 2n-1/4n+2 là tối giản
1/
a/ 11abc = 10925 + 75 + abc = 25.437 + (75 + abc)
Để 11abc chia hết cho 437 ta có 10925 = 25.437 chia hết cho 437 => 75 + abc phải chia hết cho 437
=> (75 + abc) = {437; 2.437=874} => abc = {362; 799}
b/ làm tương tự
2/
a/ \(\frac{6n+1}{5n+1}\) là phân số tối giản khi 6n+1 và 5n+1 có USC là 1
Gọi d là USC của 6n+1 và 5n+1
=> 6n+1 chia hết cho d => 5.(6n+1)=30n+5 chia hết cho d
5n+1 chai hết cho d => 6.(5n+1) =30n+6 chia hết cho d
=> (30n+6) - (30n+5) = 1 chia hết cho d => d=1
=> \(\frac{6n+1}{5n+1}\) là phân số tối giản
\(\dfrac{2n+1}{2n\left(n+1\right)}=\dfrac{2n+1}{2n^2+2n}\)
Gọi \(d=ƯCLN\left(2n+1;2n^2+2n\right)\left(d\in N\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n^2+2n⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2n^2+n⋮d\\2n+1⋮d\end{matrix}\right.\)
\(\Leftrightarrow n⋮d\)
Mà \(2n+1⋮d\)
\(\Leftrightarrow\left\{{}\begin{matrix}2n⋮d\\2n+1⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(2n+1;2n\left(n+1\right)\right)=1\)
\(\Leftrightarrow\) Phân số \(\dfrac{2n+1}{2n\left(n+1\right)}\) là phân số tối giản
c,Để phân số trên là phân số tối giản thì (3n+2;5n+3) = 1
Gọi \(d\inƯCLN\left(3n+2;5n+3\right)\)
Ta có:\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\) \(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\left(3n+2;5n+3\right)=1\)
Vậy phân số\(\dfrac{3n+2}{5n+3}\) là phân số tối giản
a,để phân số trên tối giản thì (n+1;2n+3) = 1
Gọi \(d\inƯCLN(n+1;2n+3)\) \(\left(d\in N\right)\)
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\left(n+1;2n+3\right)=1\)
Vậy phân số \(\dfrac{n+1}{2n+3}\) là một phân số tối giản
Trả lời;
mình cho 3 tick