Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hãy nhìn kĩ hihi
vì mỗi p/số của M đều bé hơn 1,áp dụng quy tắc thứ 7 để so sánh có
1/2<1+1/2+1=2/3(xảy ra khi p/số<1 như trên)
3/4<3+1/4+1=4/5
.......
99/100<99+1/100+1=100/101
tích chúng sẽ bé hơn
2/3.4/5.6/7......100/101=N
Vậy M<N
M.N=1/2.2/3.3/4.......99/100.100/101
tử và mẫu xuất hiện số đối nhau,khử đi còn
M.N=1/101
Dựa vào câu a,b có
M.M<M.N(vì N>M)
M.M<1/101
dpcm là M<1/10
M.M<1/10.1/10=1/100
mà M^2<1/101<1/100=1/10^2
=>M<1/10
hơi vắt óc nên xin olm tích cho nha
chúc học tốt
\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
TA có :\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1=2\)
\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}.2=\frac{1}{2}\left(đpcm\right)\)
Tham khảo nha bạn :
Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến
\(M=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}< \frac{1}{1!}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(M< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(M< 1+1-\frac{1}{100}\)
\(M< 2-\frac{1}{100}< 2\)
Ta có: 3! = 1.2.3 = 6
=> \(3!-M>6-2\)
=> \(3!-M>4\)
Chỗ 3! - M > 4 do M < 2 nếu bn ko hỉu thì bn xem bên VD bên dưới
VD: 3 < 4
=> 8 - 3 > 8 - 4