Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^6-n^4-n^2+1\)
\(=n^4\left(n^2-1\right)-\left(n^2-1\right)=\left(n^4-1\right)\left(n^2-1\right)\)
\(=\left(n^2-1\right)^2\left(n^2+1\right)\)
Thay n=2k+1 vào giải :))
1/
n=2 ta thấy đúng
GS đúng với n=k tức là (1-x)k+(1+x)k<2k
Ta cm đúng với n=k+1
(1-x)k+1+(1+x)k+1< (1-x)k+(1+x)k+(1-x)(1+x)k+(1-x)k(1+x)= 2\(\left(\left(1-x\right)^k+\left(1+x\right)^k\right)\)\(< 2.2^k=2^{k+1}\)
=> giả sử là đúng
theo nguyên lí quy nạp ta có đpcm
Cm ý đầu bằng phương pháp quy nạp:
Ta thấy n=1, n=2, n=3 đúng (sử dụng hệ thức Vi-ét);
Giả sử n=k đúng, cần chứng minh n=k+.
Ta có(xk1+xk2)(x1+x2)=xk+11+xk+12+x1x2(xk−11+xk−12)⇔xk+11+xk+12=−p(xk1+xk2)+(xk−11+xk−12)(x1k+x2k)(x1+x2)=x1k+1+x2k+1+x1x2(x1k−1+x2k−1)⇔x1k+1+x2k+1=−p(x1k+x2k)+(x1k−1+x2k−1)
−p(xk1+xk2)−p(x1k+x2k) là số nguyên.
xk−11+xk−12x1k−1+x2k−1 là số nguyên.
Suy ra đpcm.
Vẫn còn một phần nữa chưa chứng minh
gomu gomu no
khó quá,,,,,lm lm j,,sống 1 cuộc sống ko có j để hối tiếc,tự do hơn ai hết ( ACE)
\(1152=32.36\)
Đặt \(A=n^8-n^6-n^4+n^2=n^6\left(n^2-1\right)-n^2\left(n^2-1\right)\)
\(=n^2\left(n^2-1\right)\left(n^4-1\right)=n^2\left(n^2-1\right)\left(n^2-1\right)\left(n^2+1\right)\)
\(=\left[n\left(n-1\right)\left(n+1\right)\right]^2\left(n^2+1\right)\)
Do \(n\) lẻ \(\Rightarrow n=2k+1\)
\(\Rightarrow A=\left[\left(2k+1\right)\left(2k+1-1\right)\left(2k+1+1\right)\right]^2\left[\left(2k+1\right)^2+1\right]\)
\(=32\left[k\left(k+1\right)\left(2k+1\right)\right]^2.\left(2k^2+2k+1\right)\)
Do \(k\) và k+1 là 2 số tự nhiên liên tiếp \(\Rightarrow k\left(k+1\right)⋮2\) (1)
Nếu k chia hết cho 3 \(\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮3\)
Nếu k chia 3 dư 1 \(\Rightarrow2k+1⋮3\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮3\)
Nếu k chia 3 dư 2 \(\Rightarrow k+1⋮3\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮3\)
\(\Rightarrow k\left(k+1\right)\left(2k+1\right)\) luôn chia hết cho 3 (2)
(1);(2) \(\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮6\Rightarrow\left[k\left(k+1\right)\left(2k+1\right)\right]^2⋮36\)
\(\Rightarrow32\left[k\left(k+1\right)\left(2k+1\right)\right]^2⋮\left(32.36\right)\Rightarrow A⋮1152\)
ảnh đại diện trên google kìa