K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

Nếu n chẵn

=> n2-1 lẻ

=> không chia hết cho 24 (1)

Nếu n chia hết cho 3

=> n2 chia hết cho 3

=> n2-1 không chia hết cho 3

=> n2-1 không chia hết cho 24 (2)

Từ (1) và (2) 

=> đpcm

16 tháng 7 2016

thanks bạn nhìu 

 

1.Áp dụng định lý Fermat nhỏ.

27 tháng 8 2019

1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)

và \(5\left(a-1\right)a\left(a+1\right)⋮5\)

=> \(a^5-a⋮5\)

Nếu \(a^5⋮5\)=> a chia hết cho 5

27 tháng 8 2019

1. Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5.
=> a^5 - a chia hết cho 5
Mà a^5 chia hết cho 5 => a chia hết cho 5.
( Nếu a không chia hết cho 5 thì a^5 - a không chia hết cho 5 vì a^5 chia hết cho 5)

25 tháng 7 2017

Đề bài là gì vậy,Tìm n hay chứng minh?

25 tháng 7 2017

Chứng minh bạn

29 tháng 9 2019

                                                          Bài giải

Ta có : Nếu  \(n\text{ }⋮\text{ }5\)

\(\Rightarrow\text{ }n^2=n\cdot n\text{ là bội của }n\text{ }\Rightarrow\text{ }n^2\text{ }⋮\text{ }5\)

29 tháng 9 2019

Đây là toán lớp 6 nha !

                                                        Bài giải

Ta có : Nếu  \(n\text{ }⋮\text{ }5\)

\(\Rightarrow\text{ }n^2=n\cdot n\text{ là bội của }n\text{ }\Rightarrow\text{ }n^2\text{ }⋮\text{ }5\)

5 tháng 10 2017

giả sử n^2+4n+2 chia hết cho 4 mà n không chia hết cho 4

=> n chia cho 4 dư a (0<a<4)

=>n=4k+a

=> n^2+4n+2= 16k^2 +8ka +a^2 +16k+4a +2

=>a^2+2 chia hết cho 4, mà 0<a<4 (vô lý do k số nào thỏa mãn)

=> giả thiết sai

vậy nếu n^2 +4n+2 chia hết cho 4 thì n chia hết cho 4

AH
Akai Haruma
Giáo viên
5 tháng 10 2017

Với $n$ kiểu gì thì $n^2+4n+2$ cũng không chia hết cho $4$ nha bạn

3 tháng 9 2019

a) Gọi n chẵn là 2a

⇒ n2 = 2a . 2a = 4a2 ⋮ 2

⇒ n chẵn thì n2 chẵn

5 tháng 7 2016

Ta có : n là số tự nhiên lẻ => n = 2k+1 (\(k\in N^{\text{*}}\))

\(n^2-1=\left(2k+1\right)^2-1=4k^2+4k+1-1=4k\left(k+1\right)\)

Vì k(k+1) là tích của hai số tự nhiên liên tiếp nên chia hết cho 2.

Do đó : 4k(k+1) chia hết cho 2.4=8