K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2019

Ta có: A = x2 + y2  - 2(x + y) + 5

A = x2 + y2 - 2x - 2y + 5

A = (x- 2x +1) + (y2 - 2y + 1) + 3

A = (x - 1)2 +  (y - 1)2 + 3

Do (x - 1)2 \(\ge\)\(\forall\)x; (y - 1)2 \(\ge\)\(\forall\)y

=> (x - 1)2 + (y - 1)2 + 3 \(\ge\)3 > 0 \(\forall\)x;y

=> A > 0  \(\forall\)x; y

27 tháng 11 2019

Cách khác: \(A=\left(x-1\right)^2+\left(y-1\right)^2+3=\frac{1}{2}\left(x+y-2\right)^2+\frac{1}{2}\left(x-y\right)^2+3\ge3\)

27 tháng 9 2018

\(1)\)

\(a)\)\(A=5-8x-x^2\)

\(A=-\left(x^2+8x+16\right)+21\)

\(A=-\left(x+4\right)^2+21\le21\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+4\right)^2=0\)

\(\Leftrightarrow\)\(x=-4\)

Vậy GTLN của \(A\) là \(21\) khi \(x=-4\)

\(b)\)\(B=5-x^2+2x-4y^2-4y\)

\(-B=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)-7\)

\(-B=\left(x-1\right)^2+\left(2y+1\right)^2-7\ge-7\)

\(B=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x-1\right)^2=0\\-\left(2y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)

Vậy GTLN của \(B\) là \(7\) khi \(x=1\) và \(y=\frac{-1}{2}\)

Chúc bạn học tốt ~ 

27 tháng 9 2018

\(2)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(............\)

\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(2A=3^{128}-1\)

\(A=\frac{2^{128}-1}{3}\)

Chúc bạn học tốt ~ 

a/x +b/y +c/z =0 ->ayz+bxz+cxz=0

x/a + y/b + z/c=1 ->(x/a +y/b +z/c)^2=1

x^2/a^2 + y^2/b^2 + z^2/c^2 +2(xy/ab +yz/bc +xz/ac)=1

x^2/a^2 + y^2/b^2 + z^2/c^2 =1- 2* ayz+bxz+cxz/abc=1-2*0=1-0=1 =>ĐPCM

k hộ mik nha

28 tháng 5 2019

#)Giải :

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\rightarrow ayz+bxz+cxy=0\)

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1-2\frac{ayz+bxz+cxy}{abc}=1-2.0=1\left(đpcm\right)\)

            #~Will~be~Pens~#

14 tháng 10 2018

       \(x^2+4y^2+z^2-2x-6z+8y+15\)

\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)

\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1>0\forall x;y\)

       \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)

Chúc bạn học tốt.

20 tháng 12 2019

\(x^2+5y^2-4xy+2x-10y+14\)

\(=\left(x^2+4y^2-4xy+2x-4y+1\right)+\left(y^2-6y+9\right)+4\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\)

Vì \(\hept{\begin{cases}\left(x-2y+1\right)^2\ge0;\forall x,y\\\left(y-3\right)^2\ge0;\forall x,y\end{cases}}\)

\(\Rightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2+4\ge4>0;\forall x,y\)

Vậy ...

10 tháng 5 2019

Tìm min chứ nhỉ?

\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(2x+2y+\frac{4}{x+y}\right)^2}{2}=8\)

\("="\Leftrightarrow x=y=\frac{1}{2}\)

28 tháng 9 2020

Câu 1

5x2 + 10y2 - 6xy - 4x - 2y + 3 

= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1

= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

Câu 2

a) A = 2011.2013 = ( 2012 - 1 )( 2012 + 1 ) = 20122 - 1 < 20122

=> A < B

B = 3128 - 1 

= ( 364 - 1 )( 364 + 1 )

= ( 332 - 1 )( 332 + 1 )( 364 + 1 )

= ( 316 - 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )

= ( 34 - 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )

= ( 32 - 1 )( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )

= ( 3 - 1 )( 3 + 1 )( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )

= 8( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 ) > 4( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )

=> B > A

28 tháng 9 2020

a,\(5x^2+10y^2-6xy-4x-2y+3\)

\(=x^2+4x^2+y^2+9y^2-6xy-4x-2y+1+1+1\)

\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)

\(=\left(x+3y\right)^2+\left(2x+1\right)^2+\left(y-1\right)^2+1\ge1>0\forall x,y\)

\(\Rightarrowđpcm\)

2x2+2y2=5xy

<=>2x2-5xy+2y2=0

<=>(2x2-4xy)-(xy-2y2)=0

<=>2x(x-2y)-y(x-2y)=0

<=>(x-2y).(2x-y)=0

<=> (x-2y)=0 hoặc 2x-y=0

Nếu x-2y=0 =>x=2y

=>E=\(\frac{x+y}{x-y}\)=\(\frac{2y+y}{2y-y}\)=\(\frac{3y}{y}\)=3

Nếu 2x-y=0 =>2x=y

=>E=\(\frac{x+y}{x-y}\)=\(\frac{x+2x}{x-2x}\)=\(\frac{3x}{-1x}\)= -3

7 tháng 3 2020

2x^2 + 2y^2 = 5xy

<=> 2x^2 + 2y^2 - 5xy = 0

<=> 2x^2  - 4xy + 2y^2 - xy  = 0

<=> 2x(x - 2y) - y(x - 2y) = 0

<=> (2x - y)(x - 2y) = 0

<=> 2x = y hoặc x = 2y

thay vào là xong

22 tháng 7 2019

C = y( x^4-y^4)-x^4y+y^5

    =x^4y-y^5-x^4y+y^5

    =0

Vậy...........................................

22 tháng 7 2019

Bài giải ....

C = y . ( x2 - y2 ) ( x2 + y2) - y ( x4 - y4 )

C = y . \([(x^2)^2-\left(x^2\right)^2]\)- y . ( x4 - y4 )

C = y . ( x4 - y4 ) - y . ( x4 - y4 )

C = 0