K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
15 tháng 3 2019
TA có x+y=1=>x=1-y=>xy=y(1-y)=y-y^2=-(y^2-y+1/4)+1/4=-(y-1/2)^2+1/4<=1/4
=>2xy<=1/2=>1-2xy>=1/2 . rồi bạn tiếp tục cm như bài cũ
11 tháng 3 2018
a, Áp dụng bđt cosi ta có :
2xy.(x^2+y^2) < = (2xy+x^2+y^2)^2/4 = (x+y)^4/4 = 2^4/4 = 4
<=> xy.(x^2+y^2) < = 2
=> ĐPCM
Dấu "=" xảy ra <=> x=y=1
Vậy ............
Tk mk nha
11 tháng 3 2018
b, Có : x.y < = (x+y)^2/4 = 2^2/4 = 1
<=> 2xy < = 2
Ta có : 1/x^2+y^2 + 1/xy = 1/x^2+y^2 + 1/2xy + 1/2xy >= \(\frac{9}{x^2+y^2+2xy+2xy}\)
= \(\frac{9}{\left(x+y\right)^2+2xy}\)
< = \(\frac{9}{2^2+2}\)= 3/2
=> ĐPCM
Dấu "=" xảy ra <=> x=y=1
ND
0
NN
0
HP
4
Áp dụng BĐT Cô-si:
\(x^3+x^3+8\ge3\sqrt[3]{8x^6}=6x^2\)
\(y^6+y^6+1+1+1+1\ge6\sqrt[6]{y^{12}}=6y^2\)
Cộng vế:
\(2\left(x^3+y^6\right)+12\ge6\left(x^2+y^2\right)\ge30\)
\(\Rightarrow x^3+y^6\ge9\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;1\right)\)