Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(S=\dfrac{105}{abc+ab+a}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+105}\)
\(=\dfrac{abc}{a\left(bc+b+1\right)}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)
\(=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{a}{a\left(b+1+bc\right)}\)
\(=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{bc+b+1}\)
\(=\dfrac{bc+b+1}{bc+b+1}=1\)
Vậy S = 1
Thay \(abc=105\) ta có:
\(S=\dfrac{abc}{abc+ab+a}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)
\(\Rightarrow S=\dfrac{abc}{a\left(bc+b+1\right)}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)
\(\Rightarrow S=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{b+1+bc}\)
\(\Rightarrow S=\dfrac{bc+b+1}{bc+b+1}=1\)
Vậy \(S=1\)
a/ \(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)........\left(1-\dfrac{1}{a+1}\right)\)
\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\left(\dfrac{3}{3}-\dfrac{1}{3}\right).......\left(\dfrac{a+1}{a+1}-\dfrac{1}{a+1}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.............\dfrac{a}{a+1}\)
\(=\dfrac{1}{a+1}\)
Giúp với mình cần bài này gấp , bạn nào làm giúp mình , mình tick cho
Vai trò a,b,c như nhau giả sử a < b < c
Mà a, b, c là các số nguyên tố khác nhau đôi một
=> \(a\ge2\), \(b\ge3\), \(c\ge5\)
=> \(\left\{{}\begin{matrix}\dfrac{1}{\left[a,b\right]}=\dfrac{1}{ab}\le\dfrac{1}{2.3}\le\dfrac{1}{6}\\\dfrac{1}{\left[b,c\right]}=\dfrac{1}{bc}\le\dfrac{1}{3.5}\le\dfrac{1}{15}\\\dfrac{1}{\left[c,a\right]}=\dfrac{1}{ac}\le\dfrac{1}{2.5}\le\dfrac{1}{10}\end{matrix}\right.\)
=> \(\dfrac{1}{\left[a,b\right]}+\dfrac{1}{\left[b,c\right]}+\dfrac{1}{\left[c,a\right]}\le\dfrac{1}{6}+\dfrac{1}{15}+\dfrac{1}{10}\)
=> \(\dfrac{1}{\left[a,b\right]}+\dfrac{1}{\left[b,c\right]}+\dfrac{1}{\left[c,a\right]}\le\dfrac{1}{3}\)
=> đpcm
cau 1
de a dat gia tri lon nhat suy ra5a-17/4a-23 lon nhat
suy ra 4a-23 phai nho nhat khac 0 va la so nguyen duong
suy ra 4a-23=1
suy ra 4a=1+23=24
suy ra a=24 chia 4=6
vay de a nho nhat thi a=6
Ta có :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\) \(\Rightarrow a;b;c< 1\)
Xét \(a\ne b\ne c\) thì rõ ràng ta thấy không có giá trị tự nhiên thõa mãn cho a ; b ;c.
Xét \(a=b=c\) thì ta lại có 3 TH :
TH1: \(a=b=c=2\), thế vào biểu thức ta có:
\(\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}>1\) (loại)
TH2: \(a=b=c=3\), thế vào biểu thức ta có:
\(\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}=1\) (đúng)
TH3: \(a=b=c< 3\)
Thì \(\dfrac{1}{a+q}+\dfrac{1}{b+q}+\dfrac{1}{c+q}>\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}=1\)(loại)
Vậy \(a=b=c=3\)
Không biết có đúng không nữa
a) Ta có:
\(\overline{abcdeg}=10000.\overline{ab}+100.\overline{cd}+eg=9999.\overline{ab}+99.\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)\(9999.\overline{ab}⋮11\)
\(99.\overline{cd}⋮11\)
\(\overline{ab}+\overline{cd}+\overline{eg}⋮11\)
\(\Rightarrow9999.\overline{ab}+99.\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)hay \(\overline{abcdeg}⋮11\)(đpcm)
b) Ta có:
\(E=92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{92}{100}=\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...\left(1-\dfrac{92}{100}\right)=\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{100}=8.\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{100}\right)\)\(F=\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{100}\right)\)
\(\dfrac{E}{F}=\dfrac{8\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{100}\right)}=\dfrac{8}{\dfrac{1}{5}}=40\)
A= \(\dfrac{-3}{5}-\dfrac{-4}{5}+\dfrac{-9}{10}\)
A = \(\dfrac{-7}{10}\)
Lời giải:
Ta có:
\(\text{VT}=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{a.c}{abc+ac+c}+\frac{b.ac}{bc.ac+b.ac+ac}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\) (thay \(abc=1\) )
\(=\frac{ac+1+c}{ac+1+c}=1\)
Ta có đpcm.