\(x^2-2-2y^2=2011\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2019

Ta có: \(x^2-2y^2=1\Rightarrow x^2+1=2\left(y^2+1\right)\)          (**)

Vì \(2\left(y^2+1\right)⋮2\Rightarrow\left(x^2+1\right)⋮2\Rightarrow x^2lẻ\Rightarrow\)x lẻ 

Vậy x có dạng 2k + 1, thay x = 2k + 1 vào (**) ta được:

 \(\left(2k+1\right)^2+1=2\left(y^2+1\right)\)

\(\Rightarrow4k^2+4k+2=2\left(y^2+1\right)\)

\(\Rightarrow2k^2+2k+1=y^2+1\)

\(\Rightarrow2\left(k^2+k\right)=y^2\)

\(\Rightarrow y^2⋮2\) vì \(2\left(k^2+k\right)⋮2\)

Mà y nguyên tố nên suy ra y = 2. Khi đó x = 3. (thoả x,y là số nguyên tố).

Vậy (x,y) = (3,2)

25 tháng 11 2019

Vì VT lẻ mà \(2y^2\)là số chẵn \(\Rightarrow x^2lẻ\)

Cho x = 2k + 1(k thuộc N)

pt trở thành \(\left(2k+1\right)^2-2y^2=1\)

\(\Leftrightarrow4k^2+4k-2y^2=0\)

\(\Leftrightarrow2k^2+2k-y^2=0\)

Cần \(y^2⋮2\Leftrightarrow y^2⋮4\).Vì y là snt nên nó chỉ có thể là 2\(\Rightarrow y=2\)

Mà thay y = 2 vô thì pt ko có nghiệm nguyên với  x,y là số nguyên tố.

Vậy pt vô nghiệm hay S={rỗng}

12 tháng 8 2017

Ta có:

\(x^2+x^2y^2-2y=0\)

\(\Leftrightarrow x^2=\frac{2y}{y^2+1}\le1\)(cái này chứng minh đơn giản b tự làm lấy nhé)

\(\Leftrightarrow-1\le x\le1\left(1\right)\)

Ta lại có:

\(x^3+2y^2-4y+3=0\)

\(\Leftrightarrow x^3=-1-2\left(y-1\right)^2\le-1\left(2\right)\)

Từ (1) và (2) \(\Rightarrow x=-1\)

\(\Rightarrow y=1\)

\(\Rightarrow x^2+y^2=1+1=2\)

1 tháng 5 2020

kdfjeuy;r;

16 tháng 6 2019

https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/

16 tháng 6 2019

bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo