Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm các đường phân giác của các góc: A, B, C, D theo thứ tự cắt nhau tại E, H, F, G.
* Trong ∆ ADG , ta có:
∠ (GAD) = 45 0 ; ∠ (GDA) = 45 0 (gt)
Suy ra: ∠ (AGD) = 180 0 - ∠ (GAD) - ∠ (GDA) = 90 0
⇒ ∆ GAD vuông cân tại G.
⇒ GD = GA
Trong ∆ BHC, ta có:
∠ (HBC) = 45 0 ; ∠ (HCB) = 45 0 (gt)
Suy ra: ∠ (BHC) = 180 0 - ∠ (HBC) - ∠ (HCB) = 90 0
⇒ ∆ HBC vuông cân tại H.
⇒ HB = HC
* Trong ΔFDC, ta có: ∠ D 1 = 45 0 ; ∠ C 1 = 45 0 (gt)
Suy ra: ∠ F = 180 0 - D1 - C1 = 90 0
⇒ ∆ FDC vuông cân tại F ⇒ FD = FC
Nên tứ giác EFGH là hình chữ nhật (vì có 3 góc vuông).
Xét ∆ GAD và ∆ HBC,ta có: ∠ (GAD) = ∠ (HBC) = 45 0
AD = BC (tính chất hình chữ nhật)
∠ (GDA) = ∠ (HCB) = 45 0
Suy ra: ∆ GAD = ∆ HBC ( g.c.g)
Do đó, GD = HC .
Lại có: FD = FC (chứng minh trên)
Suy ra: FG = FH
Vậy hình chữ nhật EFGH có hai cạnh kề bằng nhau nên nó là hình vuông.
gọi Cho hình bình hành ABCD. Các tia phân giác của các góc của hình bình hành cắt nhau tạo thành tứ giác EFGH.
dễ dàng nhận thấy AP // CM vì góc DAP = góc BCM. Tương tự ta có EF//HG
vậy tứ giác EFGH là hình bình hành
Vì ABCD là hình bình hành nên
góc B+C = 180
xét tam giác CGB
có góc B+C = 180 : 2 = 90 vậy góc G = 90
xét hình bình hành EFGH có 1 góc vuông nên đó là hình chữ nhật