Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-6x+10\)
\(=x^2-2.x.3+9+1\)
\(=\left(x-3\right)^2+1>0\)
\(4x^2-20x+27\)
\(=\left(2x\right)^2-2.2x.5+25+2\)
\(=\left(2x-5\right)^2+2>0\)
\(x^2+x+1\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
học tốt
a) A=x2 _ 6x + 10
<=> A=x2-6x+9+1
<=> A=(x-3)2+1 luôn dương với mọi x
b) B=4x2 _ 20x + 27
<=> 4x2-20x +25+2
<=> (2x-5)2+2 luôn dương với mọi x
c) C=x2 + x +1
<=> x2+2.x 1/2 + 1/4 +3/4
<=> (x+1/2)2+3/4 luôn dương với mọi x
1/ Sửa đề a+b=1
\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
Thay a+b=1 vào M ta được:
\(M=1-3ab+3ab\left[1-2ab\right]+6a^2b^2\)
\(=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)
2/ Đặt \(A=\frac{2n^2+7n-2}{2n-1}=\frac{\left(2n^2-n\right)+\left(8n-4\right)+2}{2n-1}=\frac{n\left(2n-1\right)+4\left(2n-1\right)+2}{2n-1}=n+4+\frac{2}{2n-1}\)
Để \(A\in Z\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng:
2n-1 | 1 | -1 | 2 | -2 |
n | 1 | 0 | 3/2 (loại) | -1/2 (loại) |
Vậy n={1;0}
A = x2 - 8x +20 = x2 - 2*x*4 + 42 + 4 = (x - 4)2 + 4 >= 4 => Biểu thức luôn dương
B = x2 - x + 1 = x2 - 2*x*1/2 + 1/4 + 3/4 = (x - 1/2)2 + 3/4 >= 3/4 => Biểu thức luôn dương
C = 4x2 -12x + 11 = 4x2 - 2*2x*3 + 9 + 2 = (2x - 3)2 +2 >= 2 => Biểu thức luôn dương
A = x2 - 8x +20 = x2 - 2*x*4 + 42 + 4 = (x - 4)2 + 4 >= 4 => Biểu thức luôn dương
B = x2 - x + 1 = x2 - 2*x*1/2 + 1/4 + 3/4 = (x - 1/2)2 + 3/4 >= 3/4 => Biểu thức luôn dương
C = 4x2 -12x + 11 = 4x2 - 2*2x*3 + 9 + 2 = (2x - 3)2 +2 >= 2 => Biểu thức luôn dương
K cho mình nha !!!!!!!!!!!!
\(Q=x^2+y^2+xy+x+y+10\)
\(=\left(x^2+xy+x\right)+y^2+y+10\)
\(=x^2+x\left(y+1\right)+y^2+y+10\)
\(=x^2+2.x.\frac{y+1}{2}+\left(\frac{y+1}{2}\right)^2+y^2+y-\left(\frac{y+1}{2}\right)^2+10\)
\(=\left(x+\frac{y+1}{2}\right)^2+y^2+y-\frac{\left(y+1\right)^2}{4}+10\)
\(=\left(x+\frac{y+1}{2}\right)^2+y^2+y-\frac{y^2+2y+1}{4}+10\)
\(=\left(x+\frac{y+1}{2}\right)^2+y^2+y-\frac{1}{4}y^2-\frac{1}{2}y-\frac{1}{4}+10\)
\(=\left(x+\frac{y+1}{2}\right)^2+\frac{3}{4}y^2+\frac{1}{2}y+\frac{39}{4}\)
\(=\left(x+\frac{y+1}{2}\right)^2+\frac{3}{4}\left(y^2+\frac{2}{3}y+13\right)=\left(x+\frac{y+1}{2}\right)^2+\frac{3}{4}\left(y^2+2.y.\frac{2}{6}+\frac{4}{36}-\frac{4}{36}+13\right)\)
\(=\left(x+\frac{y+1}{2}\right)^2+\frac{3}{4}\left[\left(y+\frac{2}{6}\right)^2+\frac{116}{9}\right]=\left(\frac{2x+y+1}{2}\right)^2+\frac{3}{4}\left(y+\frac{2}{6}\right)^2+\frac{29}{3}\)
Vì \(\left(\frac{2x+y+1}{2}\right)^2\ge0;\frac{3}{4}\left(y+\frac{2}{6}\right)^2\ge0=>\left(\frac{2x+y+1}{2}\right)^2+\frac{3}{4}\left(y+\frac{2}{6}\right)^2+\frac{29}{3}\ge\frac{29}{3}>0\) (với mọi x;y)
Vậy biểu thức Q luôn dương với mọi giá trị của biến
=>4Q=4x2+4xy+4y2+4x+4y+40
=4x2+4x(y+1)+(y+1)2+4y2-y2+4y-2y+40-1
=(2x+y+1)2+3y2+2y+39
\(=\left(2x+y+1\right)^2+\left(\sqrt{3}y+\frac{\sqrt{3}}{3}\right)^2+\frac{116}{3}\)
\(\Rightarrow Q=\left(\frac{2x+y+1}{2}\right)^2+\left(\frac{\sqrt{3}y+\frac{\sqrt{3}}{3}}{2}\right)^2+\frac{29}{3}>0\)
=>đpcm
A = x2 - x + 1
A = x2 - 2.x.\(\frac{1}{2}\)+\(\frac{1}{4}\) +\(\frac{3}{4}\)
A = \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
B = (x - 2)(x - 4) + 3
B = x2 - 4x - 2x + 8 + 3
B = x2 - 6x + 11
B = x2 - 2.3.x + 9 + 3
B = \(\left(x-3\right)^2+3>0\)
C = 2x2 - 4xy + 4y2 + 2x + 5
C = (x2 - 4xy + 4y2) + x2 + 2x + 5
C = (x - 2y)2 + (x2 + 2x + 1) + 4
C = (x - 2y)2 + (x + 1)2 + 4
Xét biểu thức C thấy :
Có 2 hạng tử không âm (vì là bình phương)
Vậy C > 0
\(2x^2+2x+7=2x^2+2x+\frac{1}{2}+\frac{13}{2}\)
\(=2\left(x^2+x+\frac{1}{4}\right)+\frac{13}{2}=2.\left(x+\frac{1}{2}\right)^2+\frac{13}{2}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow2\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2.\left(x+\frac{1}{2}\right)^2+\frac{13}{2}\ge\frac{13}{2}\forall x\)
\(\Rightarrow2x^2+2x+7\ge\frac{13}{2}\forall x\)
hay biểu thức \(2x^2+2x+7\)luôn dương với mọi x ( đpcm )
2x2 + 2x + 7
= 2( x2 + x + 1/4 ) + 13/2
= 2( x + 1/2 )2 + 13/2 ≥ 13/2 > 0 ∀ x ( đpcm )
a)Đặt A= \(x^2+2x+11=\left(x+1\right)^2+10\)
vì \(\left(x+1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x+1\right)^2+11\ge11;\forall x\)
Hay \(A\ge11>0;\forall x\)
phần b và c mình sẽ giải ra hằng đẳng thức lập luận tương tự phần a
b)\(4x^2+8x+5\)
\(\left(2x\right)^2+2.2x.2+2^2+1\)
\(=\left(2x+2\right)^2+1\)
c) \(x^2+x+2=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)
a) \(x^2+2x+11\)
\(=\left(x^2+2x+1\right)+10\)
\(=\left(x+1\right)^2+10\ge10\)
\(\text{Vì }\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+10\ge10\Rightarrow\left(x+1\right)^2+10>0\)
\(\Leftrightarrow x^2+2x+11>0\)
Vậy biểu thước x2+2x+11 luôn có giá trị dương