K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

Nhanh lên nhé

8 tháng 11 2020

giải đi, mình cũng đang cần

5 tháng 4 2016

Bài 1

6 số tự nhiên bất kì khi chia cho 6 thì xảy ra 6 trường hợp về số dư (0;1;2;3;4;5), còn 1 số kia thì cũng có thể xảy ra 1 trong 6 trường hợp

Số này nếu trừ cho 1 trong 6 số kia thì chắc chắn có 1 số thỏa mãn

Bài 2

5 số tự nhiên liên tiêp này chia cho 5 cũng xảy ra 5 th về dư, chứng minh tương tự bài 1. Bạn cố gắng dùng từ hay hơn nha

3 tháng 8 2015

Xét 3 số tự nhiên liên tiếp: 10.p;10+1;2.(5p+1)

=> Có 1 số chia hết cho 3; một số chia hết cho 2

Vì p và 10p+1 là 2 sồ nguyên tố (p>3)

=>p và 10p+1 ko chia hết cho 3 và 2. Vì 10 và 3 nguyên tố cùng nhau; 10 chia hết cho 2

=>10p và 10p+1 ko chia hết cho 3; 10p chia hết cho 2; 10p+1 ko chia hết cho 2

=>10p+2 chia hết cho 3. Vì 2 chia hết cho 2=>10p+2 chia hết cho 2

Vì 2 và 3 nguyên tố cùng nhau =>5p+1 chia hết cho cả 3 và 2

Vậy 5p+1 chia hết cho 6 (đpcm)

nhấn đúng nha

22 tháng 3 2016

p nguyên tố > 3 

=> 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3 
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3 
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) 
Mà 2 và 3 đều là những số nguyên tố nên từ (*) => 5p+1 chia hết cho 3 
Mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẵn => chia hết cho 2 
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau 
=> 5p+1 chia hết cho 2*3 = 6