K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2019

b) \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (chuyển vế qua)

\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Do VP >=0 với mọi a, b, c. Nên để đăng thức xảy ra thì a = b = c

31 tháng 7 2019

c) a + b + c = 0 suy ra a = -(b+c)

\(a^3+b^3+c^3=b^3+c^3-\left(b+c\right)^3\)

\(=b^3+c^3-b^3-3bc\left(b+c\right)-c^3\)

\(=3bc.\left[-\left(b+c\right)\right]=3abc\) (đpcm)

19 tháng 10 2018

a) \(75^6-45^6\)

\(=\left(75^2\right)^3-\left(45^2\right)^3\)

\(=\left(75^2-45^2\right)\left(75^4+75^2.45^2+45^4\right)\)

\(=\left(75-45\right)\left(75+45\right)\left(75^4+75^2.45^2+45^4\right)\)

\(=30.120.\left(75^4+75^2.45^2+45^4\right)\)

\(=3600\left(75^4+75^2.45^2+45^4\right)⋮3600\)

b) Xem lại đề

c) \(7^{19}+7^{20}+7^{21}\)

\(=7^{19}\left(1+7+7^2\right)\)

\(=7^{19}.57⋮57\)

Ta có: \(a^4+a^3b+ab^3+b^4\)

\(=a^3\left(a+b\right)+b^3\left(a+b\right)\)

\(=\left(a+b\right)\left(a^3+b^3\right)\)

\(=\left(a+b\right)^2\cdot\left(a^2-ab+b^2\right)\)

Ta có: \(a^2-ab+b^2\)

\(=a^2-2\cdot a\cdot\frac{1}{2}b+\frac{1}{4}b^2+\frac{3}{4}b^2\)

\(=\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2\)

Ta có: \(\left(a-\frac{1}{2}b\right)^2\ge0\forall a,b\)

\(\frac{3}{4}b^2\ge0\forall b\)

Do đó: \(\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2\ge0\forall a,b\)

\(\Leftrightarrow a^2-ab+b^2\ge0\forall a,b\)

\(\Leftrightarrow\left(a^2-ab+b^2\right)\left(a+b\right)^2\ge0\forall a,b\)(Vì \(\left(a+b\right)^2\ge0\forall a,b\))

hay \(a^4+a^3b+ab^3+b^4\ge0\forall a,b\)(đpcm)

25 tháng 6 2015

1.ta có: 
x^3 + y^3 + z^3 - 3xyz = (x+y)^3 + z^3 - 3x^2y - 3xy^2 - 3xyz 
= (x+y)^3 + z^3 - 3xy(x + y + z) 
= (x+y+z)^3 - 3(x+y)^2.z - 3(x+y)z^2 - 3xy(x + y + z) 
= (x+y+z)^3 - 3(x+y)z(x+ y + z) - 3xy(x + y + z) 
=(x+y+z)[(x+y+z)^2 - 3(x+y)z - 3xy] 
với x+y+z = 0 => x^3 + y^3 + z^3 - 3xyz = 0 => x^3 + y^3 + z^3 = 3xyz

2.

x=5

=>6=x+1

=> A=x6-6x5+6x4-6x3+6x2-6x+6=x6-(x+1).x5+(x+1)x4-(x+1)x3+(x+1)x2-(x+1)x+(x+1)

=x6-x6-x5+x5-x4+x4-x3+x3-x2+x2-x+x+1

=1

vậy A=1 khi x=5

25 tháng 6 2015

1,

\(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc=3abc\)

2,

\(A=\left(x-1\right)\left(x-5\right)\left(x^4+x^2+1\right)+1\)

x=5 thì A=1