Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
Mà \(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=2-\dfrac{1}{100}< 2\)
\(\Rightarrow\) \(S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
Vậy \(S< 2\left(đpcm\right).\)
Câu 1 :
Ta có :
\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+..........+\dfrac{1}{100^2}\)
Ta thấy :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
........................
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Leftrightarrow S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{99.100}\)
\(\Leftrightarrow S< 1+1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Leftrightarrow S< 1+1-\dfrac{1}{100}\)
\(\Leftrightarrow S< 2+\dfrac{1}{100}< 2\)
\(\Leftrightarrow S< 2\rightarrowđpcm\)
Đặt
A= \(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}=\frac{1}{\left(2.2\right)^2}+\frac{1}{\left(2.3\right)^2}+\frac{1}{\left(2.4\right)^2}+...+\frac{1}{\left(2n\right)^2}\)
=\(\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}\)
=> \(A=\frac{1}{2^2}\left(1-\frac{1}{n}\right)=\frac{1}{4}\left(1-\frac{1}{n}\right)=\frac{1}{4}-\frac{1}{4.n}< \frac{1}{4}\)
Ta có : \(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}\)
= \(\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{n^2}\right)\)
< \(\frac{1}{2^2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{\left(n-\right).n}\right)\)
= \(\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
= \(\frac{1}{4}.\left(1-\frac{1}{n}\right)\)
< \(\frac{1}{4}.1=\frac{1}{4}\)
\(\Rightarrow\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}< \frac{1}{4}.\left(1-\frac{1}{n}\right)< \frac{1}{4}\)
\(\Rightarrow\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}< \frac{1}{4}\left(đpcm\right)\)
6/ \(\frac{2n-4}{n}=\frac{2n}{n}-\frac{4}{n}\) \(=2-\frac{4}{n}\)
Để 2n - 4 chia hết cho n thì 4 chia hết cho n
\(\Rightarrow\) n = 1; n = 2; n = 4
7/ \(\frac{35+12n}{n}=\frac{35}{n}+\frac{12n}{n}=\frac{35}{n}+12\)
Để 35 + 12n chia hết cho n thì 35 chia hết cho n
\(\Rightarrow\) n = 1; n = 5; n = 7; n = 35
1/ Để 7 \(⋮\) n (n \(\in N\)) thì n = 1; n = 7
2/ Để 7 \(⋮\) \(\left(n-1\right)\) thì \(n-1=1;n-1=-1;n-1=7;n-1=-7\)
*) \(n-1=1\)
n = 1 + 1
n = 2 (thỏa mãn n là số tự nhiên)
*) \(n-1=-1\)
\(n=-1+1\)
n = 0 (thỏa mãn n là số tự nhiên)
*) \(n-1=7\)
n = 7 + 1
n = 8 (thỏa mãn n là số tự nhiên)
*) \(n-1=-7\)
\(n=-7+1\)
\(n=-6\) (không thỏa mãn n là số tự nhiên)
Vậy n = 8; n = 2; n = 0
1/4^2+1/6^2+1/8^2+....+1/(2n)^2<1/4
CMR : Thì nó bé hơn thì cần gì phải chứng minh nhỉ ?
những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé