Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
\(\frac{1}{4^2}<\frac{1}{3.4}\)
..........
\(\frac{1}{100^2}<\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
Vì \(\frac{99}{100}<1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1\)
Tổng quát: \(\frac{1}{n^2}<\frac{1}{\left(n-1\right).n}\)
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}<1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1\)
Đặt biểu thức ở vế trái là A ta có
\(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\)
\(=1-\frac{1}{100}<1\Rightarrow A<1\) (dpcm)
ta có 1/2^2+1/3^2+1/4^2+...+1/100^2<A=1/1*2+1/2*3+1/3*4+...+1/99*100
=> A= (1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/99-1/100)
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100= 99/100 <1
=> 1/2^2+1/3^2+1/4^2+...+1/100^2<1
1/2^2+1/3^2+1/4^2+..+1/100^2
1/2^2<1/1.2=1-1/2
1/3^2<1/2.3=1/2-1/3
1/4^2<1/3.4=1/3-1/4
........
1/100^2<1/99.100=1/99-1/100
1/2^2+1/3^2+1/4^2+...+1/100^2<1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
1/2^2+1/3^2+1/4^2+...+1/100^2<1-1/100=99/100<1 (đpcm)
Ta thấy :
\(\frac{1}{2^2}<\frac{1}{1.2};\)
\(\frac{1}{3^2}<\frac{1}{2.3}\);
...................
\(\frac{1}{100^2}<\frac{1}{99.100}\);
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)
\(=\frac{1}{1}+0+0+...+0-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}<1\)
HAY \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<1\)
Ta gọi tổng trên là A
Ta có: A = \(\frac{1}{2^2}\)+\(\frac{1}{3^2}+...+\frac{1}{100^2}\)=\(\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{100.100}\)
\(\Rightarrow\) A < \(\frac{1}{1.2}+\frac{1}{2.3}\)+...+\(\frac{1}{99.100}\)
\(\Rightarrow\) A < 1- \(\frac{1}{2}\)+\(\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\) A < \(1-\frac{1}{100}\)
\(\Rightarrow\) A < \(\frac{99}{100}\)
Vì A < \(\frac{99}{100}\)< 1 nên A < 1
1/2^2+1/3^2+...+1/100^2
=1/2.2+1/3.3+...+1/100.100 < 1/1.2+1/2.3+...+1/99.100=1-1/100<1
Vậy 1/2^2+1/3^2+...+1/100^2<1
Ta so sánh:
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) và biểu thức \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
Mà \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4}+...+\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< A\) ( 1 )
Ta lại so sánh giữa biểu thức A và 1
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
Mà \(\frac{99}{100}< 1\Leftrightarrow A< 1\)( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
\(a)\) Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\) ta có :
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(A< 1\)
Chúc bạn học tốt ~