K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 2 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Nguyễn Kim Chi - Toán lớp 7 | Học trực tuyến

Và lưu ý lần sau gõ đề bằng công thức toán nhé.

19 tháng 6 2017

a) Ta có : $1.3+2.4+3.5+...+99.101+100.102$

$=(2-1)(2+1)+(3-1)(3+1)+(4-1)(4+1)+...+(100-1)(100+1)+(101-1)(101+1)$

$=2^2-1+3^2-1+4^2-1+...+100^2-1+101^2-1$

$=(2^2+3^2+4^2+...+100^2+101^2)-100$

b) $1.100+2.99+3.98+...+99.2+100.1$

$=1.100+2.(100-1)+3.(100-2)+...+99.(100-98)+100.(100-99)$

$=100(1+2+3+...+99+100)-(1.2+2.3+...+99.100)$

$=100.\dfrac{101.100}{2}-\dfrac{99.100.101}{3}=171700$

3 tháng 2 2020

Tham khảo:Câu hỏi của Đào Thị Hoàng Yến - Toán lớp 6 - Học toán với OnlineMath

3 tháng 2 2020

Câu hỏi của bui hang trang - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo nhé!

31 tháng 5 2017

sao dễ vậy

a) Ta chọn biểu thức B làm trung gian sao cho A > B, còn B \(\ge\)\(\frac{7}{12}\)

Tách A thành 2 nhóm, mỗi nhóm 50 phân số, rồi thay mỗi phân số trong từng nhóm bằng phân số nhỏ nhất trong nhóm ấy, ta được :

A =  \(\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)

\(>\frac{1}{150}.50+\frac{1}{200}.50=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

b) Tách A thành bốn nhóm rồi cũng làm như trên, ta được :

A > \(\frac{25}{125}+\frac{25}{150}+\frac{25}{175}+\frac{25}{200}=\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\frac{1}{8}=\frac{107}{210}+\frac{1}{8}>\frac{1}{2}+\frac{1}{8}=\frac{5}{8}\)

17 tháng 6 2017

\(a,A=-1+3-5+7-9+...-2013+2015-2017=\left(-1+3\right)+\left(-5+7\right)+...+\left(-2013+2015\right)-2017\)\(=2+2+..+2-2017\)

\(=2.504-2017=-1009\)

\(b,B=2-4+6-8+...+2014-2016+2018\)\(=2+\left(-4+6\right)+\left(-8+10\right)+...+\left(-2016+2018\right)==2+2+...+2\)\(=2+503.2=1008\)

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

a)

\(S=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{100}+\sqrt{101}}\)

\(S=\frac{\sqrt{2}-\sqrt{1}}{(\sqrt{2}+\sqrt{1})(\sqrt{2}-\sqrt{1})}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}+....+\frac{\sqrt{101}-\sqrt{100}}{(\sqrt{101}+\sqrt{100})(\sqrt{101}-\sqrt{100})}\)

\(S=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{101}-\sqrt{100}}{101-100}\)

\(S=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\)

\(S=\sqrt{101}-1\)

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

b)

\(S=\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}+...+\frac{1}{\sqrt{100}+\sqrt{102}}\)

\(S=\frac{\sqrt{4}-\sqrt{2}}{(\sqrt{4}+\sqrt{2})(\sqrt{4}-\sqrt{2})}+\frac{\sqrt{6}-\sqrt{4}}{(\sqrt{6}+\sqrt{4})(\sqrt{6}-\sqrt{4})}+...+\frac{\sqrt{102}-\sqrt{100}}{(\sqrt{102}+\sqrt{100})(\sqrt{102}-\sqrt{100})}\)

\(S=\frac{\sqrt{4}-\sqrt{2}}{4-2}+\frac{\sqrt{6}-\sqrt{4}}{6-4}+....+\frac{\sqrt{102}-\sqrt{100}}{102-100}\)

\(S=\frac{\sqrt{4}-\sqrt{2}+\sqrt{6}-\sqrt{4}+\sqrt{8}-\sqrt{6}+...+\sqrt{102}-\sqrt{100}}{2}\)

\(S=\frac{\sqrt{102}-\sqrt{2}}{2}\)

1 tháng 3 2022

9092 = 0

1 tháng 3 2022

cái này + mỗi phân số vs 1 á 

 

14 tháng 2 2022

x + 1/100 + x + 2/101 = x + 3/102 - 1

<=> x + 1/100 - 1 + x + 2/101 - 1 = x + 3/102 - 1 - 2

<=> x - 99/100 + x - 99/101 = x - 99/102 - 2

<=> x - 99/100 + x - 99/101 - x - 99/102 = -2

<=> (x - 99)(1/100 + 1/101 - 1/102) = -2

<=> x - 99 = -2/1/100 + 1/101 - 1/102

<=> x = -2/1/100 + 1/101 - 1/102 + 99

Bạn chịu khó bấm máy hộ mình, số to quá