Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR 0!1!2!3.....100!<24 7623(0!=1)
đề sai chắc chắn ở dãy số trên ta có hai thừa số 99( xuất hiện ở 99! và 100!) cùng với số 100
nguyên như vậy tích là 980100>24 7623 chưa kể còn nhiều thừa số nữa
le anh tu ko tính số mũ thì thừa số 99 chỉ xuát hiện duy nhất 1 lần nếu tính cơ số mà 99! < 100! chắc z mà 99! nhỏ sao
CMR: 0!.1!.2!.3!...100!<247623(0!=1)
Đề sai, vì chắc chắn ở dãy trên ta có 2 thừa số 99 (xuất hiện ở 99! và 100!) cùng với số 100
Nguyên như vậy tích chúng là: 980100>247623, chưa kể còn nhiều thừa số nữa.
1
a) Ta có\(\frac{31}{40}=\frac{31.6}{40.6}=\frac{186}{240}\)
Vì \(240< 241\)
nên\(\frac{286}{240}>\frac{286}{241}\)
Vậy\(\frac{31}{40}>\frac{286}{240}\)
b)Ta có\(\frac{411}{911}=\frac{911-500}{911}=1-\frac{500}{911}\)
\(\frac{41}{91}=\frac{91-50}{91}=1-\frac{50}{91}=1-\frac{500}{910}\)
Vì \(\frac{500}{911}< \frac{500}{910}\)nên\(1-\frac{500}{911}>1-\frac{500}{910}\)
Vậy \(\frac{411}{911}>\frac{41}{91}\)
\(\hept{\begin{cases}-1\le x\le1\\-1\le y\le1\\-1\le z\le1\end{cases}}\Leftrightarrow x^2;y^2;z^2\le1\)
Mà: \(x;y;z\le1\Leftrightarrow y^4\le y^2;z^6\le x^2\)
\(\Leftrightarrow x^2+y^4+z^6\le x^2+y^2+z^2\)
Trong x;y;z có ít nhất 2 số cùng dấu,nghhiax là có tích >=0,giả sử đó là xy
\(\Leftrightarrow x^2+y^2+z^2\le x^2+y^2+z^2+2xy=\left(x+y\right)^2+z^2=\left(-z\right)^2+z^2=2z^2\le2\)
Nguyễn Ngọc Quý lo giải toán đến nỗi ko nhớ tên Nguyễn Đình Dũng lun ak cảkaitovskudo