\(Pi-ta-go\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

Trong toán học, định lý Pytago là một liên hệ căn bản trong hình học Euclid giữa ba cạnh tam giác của một tam giác vuông. Định lý phát biểu rằng bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh kề còn lại. Định lý có thể viết thành một phương trình liên hệ độ dài của các cạnh là a, b và c, thường gọi là "công thức Pytago

4 tháng 1 2018

Trong toán học, định lý Pytago (còn gọi là định lý Pythagore theo tiếng Anh) là một liên hệ căn bản trong hình học Euclid giữa bacạnh tam giác của một tam giác vuông. Định lý phát biểu rằng bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh kề còn lại. Định lý có thể viết thành một phương trình liên hệ độ dài của các cạnh là a, b và c, thường gọi là "công thức Pytago":[1]

{\displaystyle a^{2}+b^{2}=c^{2},}{\displaystyle a^{2}+b^{2}=c^{2},}

7 tháng 11 2016

Ta không thể áp dụng định lý Fermat nhỏ ngay được vì 2013 va 2016 không là hai số nguyên tố cùng nhau. Cô gợi ý một cách để có thể áp dụng định lý Fermat nhỏ:
\(2013^{2016}=\left(-3\right)^{2016}\left(mod2016\right)=3^{2016}\left(mod2016\right)\)
\(2016=2^5.3^2.7\).
Gọi x là số dư của \(3^{2016}\)khi chia cho 2016. Ta suy ra:
                                  .\(\hept{\begin{cases}3^{2016}=x\left(mod2^5\right)\\3^{2016}=x\left(mod3^2\right)\\3^{2016}=x\left(mod7\right)\end{cases}}\)
Nhận xét: \(3^8=1\left(mod2^5\right)\),\(3^6=1\left(mod7\right)\)\(3^{2016}=0\left(mod3^2\right)\). Do 2016 đều chia hết cho 8,6 nên:
                                  \(\hept{\begin{cases}3^{2016}=1\left(mod2^5\right)\\3^{2016}=1\left(mod7\right)\\3^{2016}=0\left(mod3^2\right)\end{cases}}\)
Như vậy: 
                                  \(\hept{\begin{cases}x=1\left(mod2^5\right)\\x=1\left(mod7\right)\\x=0\left(mod3^2\right)\end{cases}}\)
Từ đó suy ra : \(x-1=BC\left(2^5,7\right)\).và x chia hết cho 9, x < 2016.
Từ đó ta tìm được x = 225.
Đây là trường hợp đặc biệt nên ta áp dụng cách tìm bội chung của lớp 6 nếu giả sử rơi vào trường hợp sau:
  \(\hept{\begin{cases}x=5\left(mod2^5\right)\\x=6\left(mod7\right)\\x=2\left(mod3^2\right)\end{cases}}\)thì các bạn có thể áp dụng định lý số dư Trung Hoa.

3 tháng 11 2016

áp dụng "=] chả vại còn gì, trong trường hợp quá bí" ta có:

số chia là 2016 

Vì số dư nhỏ hơn số chia =2015

Xét 2015 trường hợp ta có:....

 

Trong toán học, định lý Pytago (còn gọi là Pythagorean theorem theo tiếng Anh) là một liên hệ căn bản trong hình học Euclid giữa ba cạnh của một tam giác vuông. Định lý phát biểu rằng bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh còn lại. Định lý có thể viết thành một phương trình liên hệ độ dài của các cạnh là ab và c, thường gọi là "công thức Pytago":[1]

{\displaystyle a^{2}+b^{2}=c^{2},}{\displaystyle a^{2}+b^{2}=c^{2},}

với c là độ dài cạnh huyền và a và b là độ dài hai cạnh góc vuông hay còn gọi là cạnh kề.

Mặc dù những hiểu biết về mối liên hệ này đã được biết trước thời của ông,[2][3] định lý được đặt tên theo nhà toán học Hy Lạp cổ đại Pythagoras (k. 570–495 BC) khi - với những tư liệu lịch sử đã ghi lại - ông được coi là người đầu tiên chứng minh được định lý này.[4][5][6] Có một số chứng cứ cho thấy các nhà toán học Babylon đã hiểu về công thức này, mặc dù có ít tư liệu cho thấy họ đã sử dụng nó trong khuôn khổ của toán học.[7][8] Các nhà toán học khu vực Lưỡng Hà, Ấn Độ và Trung Quốc cũng đều tự khám phá ra định lý này và trong một số nơi, họ đã đưa ra chứng minh cho một vài trường hợp đặc biệt.

16 tháng 5 2021
-Bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông(Định lý pytago) a^2+b^2=c^2 (a,b: cạnh góc vuông) (c: cạnh huyền)
19 tháng 12 2018

Câu hoie của Sắc màu - Toán lớp 8 - Học toán với OnlineMath

19 tháng 12 2018

Câu hỏi của Sắc màu - Toán lớp 8 - Học toán với OnlineMath