K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2016

A = sin6 + cos6 + sin4 + cos4 + 5sin2cos2

= (sin2 + cos2)(s​in4 - sincos2 + cos4) + s​in4 + 5sincos2 + cos4

= 2(sin4 + 2sin2 cos2 + cos4) = 2

22 tháng 10 2016

A = sin6x + cos6x +sin4x +cos4x + 5sin2x.cos2x

\(=\left(\sin^2x+\cos^2x\right)\left(\sin^4x-\sin^2x\cos^2x+\cos^4x\right)+\sin^4x+\cos^4x+5\sin^2x\cos^2x\)

\(=2\left(\sin^2x+2\sin^2x\cos^2x+\cos^2x\right)\)

\(=2\)

5 tháng 4 2016

\(\left(\sin^2x+\cos^2x\right)^2=1\)

\(\sin^4x+\cos^4x+2\sin^2x.\cos^2x=1\)

=> dpcm

1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)

=1

2: \(sin^4x-cos^4x\)

\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)

\(=1-2\cdot cos^2x\)

 

30 tháng 7 2018

=\(\frac{1-cos2a}{1+cos2a}\)\(\left(1+cos2a+\frac{1-cos2a}{2}-1\right)\)+\(\frac{1+cos2a}{2}\)

=\(\frac{1-cos2a}{1+cos2a}\)\(\left(cos2a+\frac{1-cos2a}{2}\right)\)+\(\frac{1+cos2a}{2}\)

=\(\frac{1-cos2a}{1+cos2a}\)\(\left(\frac{2cos2a+1-cos2a}{2}\right)\)+\(\frac{1+cos2a}{2}\)

=\(\frac{1-cos2a}{1+cos2a}\)\(\left(\frac{1+cos2a}{2}\right)\)+\(\frac{1+cos2a}{2}\)

=\(\frac{1-cos2a}{2}\)+\(\frac{1+cos2a}{2}\)

=\(\frac{1-cos2a+1+cos2a}{2}\)

=\(\frac{2}{2}\)=1

Diện  tích hcn là :

6 x 4 = 24

ĐS :...

NV
19 tháng 2 2020

\(=\frac{sin^2x}{cos^2x}\left(cos^2x+sin^2x-1+cos^2x\right)+cos^2x\)

\(=\frac{sin^2x}{cos^2x}\left(1-1+cos^2x\right)+cos^2x\)

\(=\frac{sin^2x.cos^2x}{cos^2x}+cos^2x=sin^2x+cos^2x=1\)