Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Ta có: 3n+2 - 2n+2 + 3n - 2n
= 3n( 32 +1) - 2n(22 + 1) = 10.3n - 5.2n
do n nguyên dương nên : 10.3n chia hết cho 10 và 5.2n chia hết cho 10
Vậy 3n+2 - 2n+2 + 3n - 2n chia hết cho 10 với mọi n thuộc N*
1) Ta có: A = 3n+2 - 2n+2 + 3n - 2n
=> A = 3n+2 + 3n - (2n+1 + 2n)
=> A = 3n(32 + 1) - 2n(22 + 1)
=> A = 3n.10 - 2n.5
ta thấy : 2nlà 1 số chẵn => 2n.5 \(⋮10\)
3n.10\(⋮10\)
=> \(A⋮10\) với mọi n E N* (đpcm)
2) a) ta có:
8.2n + 2n+1 = 2n( 8 + 2 ) = 2n.10 \(⋮10\)
=> 8.2n + 2n+1 có tận cùng = 0
b) ta có:
3n+3 - 2.3n + 2n+5 - 7.2n = 3n(33 - 2) + 2n(25 - 7)
= \(3^n.25-2^n.25\)
ta thấy: \(3^n.25⋮25\\ 2^n.25⋮25\\ \Rightarrow3^n.25+2^n.25⋮25\)
vậy 3n+3 - 2.3n + 2n+5 - 7.2n chia hết cho 25
ta có :
16^5=(4^2)^5=4^10=(2^2)^10=2^20
2^20-2^15=1048576-32768=1015808 chia hết cho 31
a, 3A=3^2+3^3+3^4+...+3^2016+3^2017
2A=3A-A=3^2017-3
A=3^2017-3/2
a.
A=3+32+33+...+32015+32016
3A = 32+33+...+32016+32017
3A - A = (32+33+...+32016+32017 ) - (3+32+33+...+32015+32016 )
2A = 32017 - 3
A = \(\frac{\text{ }3^{2017}-3}{2}\) \(\frac{\text{3^{2017} - 3}}{2}\)
a) Ta có:
A=3+32+33+...+32015+32016A=3+32+33+...+32015+32016
⇒3A=3(3+32+33+...+32015+32016)⇒3A=3(3+32+33+...+32015+32016)
⇒3A=32+33+34+...+32016+32017⇒3A=32+33+34+...+32016+32017
⇒3A−A=(32+33+...+32017)−(3+32+...+32016)⇒3A−A=(32+33+...+32017)−(3+32+...+32016)
⇒2A=32017−3⇒A=32017−32⇒2A=32017−3⇒A=32017−32
Vậy A=32017−32A=32017−32
b) Ta có:
A=3+32+33+...+32015+32016A=3+32+33+...+32015+32016
=(3+32+33+34)+...+(32013+32014+32015+32016)=(3+32+33+34)+...+(32013+32014+32015+32016)
=3(1+3+32+33)+...+32013(1+3+32+33)=3(1+3+32+33)+...+32013(1+3+32+33)
=3.40+...+32013.40=40(3+...+32013)=3.40+...+32013.40=40(3+...+32013)
Vậy A có chữ số tận cùng là 0
c) Dễ thấy:
AA chia hết cho 33
AA không chia hết cho 3232
Mà 33 là số nguyên tố
Nên A không là số chính phương
Ta có: A = \(3+3^2+3^3+...+3^{2015}+3^{2016}\)
a) \(3A=3^2+3^3+...+3^{2016}+3^{2017}\)
\(3A-A=3^{2017}-3\)
\(2A=3^{2017}-3\)
Suy ra \(A=\frac{3^{2017}-3}{2}\)
b) \(3A=3^2+3^3+...+3^{2016}+3^{2017}\)
\(3A-A=3^{2017}-1\)
\(2A=3^{2017}-1\)
Sau đó bạn tự giải tiếp phần b)
c) Ta có: \(3;3^2;3^3;...;3^{2015};3^{2016}⋮3\Rightarrow A⋮3\)
Mà \(3⋮̸3^2\). Suy ra A không chia hết cho 32
Ta lại có: A chia hết cho 3 nhưng không chia hết cho 32
Vì thế A không phải là số chính phương
tính 3A
XONG LẤY 3A-A
LÀ RA
LM ĐC MÀ MIK K CÓ THỜI GIAN NÊN CHỈ GIÚP BN ĐC THẾ
May ngu
Tao lv 121 lc 100k ma moi v1
TaoTM
XIn loi ban minh len con dong kinh