Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2 + xy + y^2 + 1 > 0 với mọi x, y;
ta có x^2+xy+y^2+1=(x^2+2x.y/2+y^2/4)+-y^2/4+y^2+1=(x+y/2)^2+3y^2/4+1
ta có (x+y/2)^2>=0 với mọi x, y
3y^2/4>=0 với mọi y
=>(x+y/2)^2+3y^2/4+1>0 với mọi x, y
2,4x^2 + 4x + 11 > 0 với mọi x
ta có 4x^2+4x+11=4x^2+4x+1+10=(2x+1)^2+10> 0 với mọi x
3,x^2-2x+y^2-4y+7>0 với mọi x,y
ta có x^2-2x+y^2-4y+7
=(x^2-2x+1)+(y^2-4y+4)+1
=(x-1)^2+(y-2)^2+1>0 với mọi x,y
Có gì khó hiểu đâu.
Bạn có thể xem 1 số video các thầy cô giảng cho dễ nhé
Hk tốt và nhớ k mk nha.
a ) ( 2x + 1 )2 - 4 ( x + 2 )2 = 9
4x2 + 4x + 1 - 4 ( x2 +4x + 4 ) = 9
4x2 + 4x + 1 - 4x2 -16x -16 = 9
-12x - 15 = 9
-12x = 24
x = -2
b) 3 ( x - 1 )2 - 3x ( x - 5 ) = 1
3 ( x2 - 2x + 1 ) - 3x2 + 15x = 1
3x2 - 6x + 3 - 3x2 + 15x = 1
9x + 3 = 1
9x = -2
x = \(\frac{-2}{9}\)
\(B=x^2-x\)
\(B=x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\)
\(B=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\)
mà \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow B\ge\frac{1}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Vậy Bmin = 1/4 <=> x = 1/2
P.s : đây là tìm B min
Còn cách nữa tìm Bmax :v
Vì \(x^2\ge0\forall x\)
\(\Rightarrow B\le x\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Vậy Bmax = 0 <=> x = 0
\(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)=x^2y-xy^2+y^2z-yz^2+z^2z-zx^2=x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(z-y\right)\)
\(x^2\left(y-z\right)-y^2\left(x-z\right)-z^2\left(y-z\right)=\left(y-z\right)\left(x-z\right)\left(x+z\right)-y^2\left(x-z\right)=\left(x-z\right)\left(xy-yz-zx-z^2-y^2\right)\)
t cx k bt có đúng hay k đâu nha, nhớ xem kĩ lại
a.
\(f\left(x\right)=x^3-x^2+3x-3=x^2\left(x-1\right)+3\left(x-1\right)=\left(x^2+3\right)\left(x-1\right)\)
f(x) > 0
<=> x2 + 3 và x - 1 cùng dấu
- \(\Leftrightarrow\hept{\begin{cases}x^2+3>0\\x-1>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>0\\x>1\end{cases}}\Leftrightarrow x>1\)
- \(\Leftrightarrow\hept{\begin{cases}x^2+3< 0\\x-1< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2< -3\\x< 1\end{cases}\Rightarrow}\) loại
Vậy x > 1
b.
\(g\left(x\right)=x^3+x^2+9x+9=x^2\left(x+1\right)+9\left(x+1\right)=\left(x^2+9\right)\left(x+1\right)\)
g(x) < 0
<=> x2 + 9 và x + 1 khác dấu
- \(\Leftrightarrow\hept{\begin{cases}x^2+9< 0\\x+1>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2< -9\\x>1\end{cases}\Rightarrow}\) loại
- \(\Leftrightarrow\hept{\begin{cases}x^2+9>0\\x+1< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2>-9\\x< -1\end{cases}}\Rightarrow\)loại
Vậy không tìm được x thỏa mãn yêu cầu đề.
Thực ra 2 câu đầu rất dễ nha bạn ^^!
1) x4 + 2x3 + x2 + 2x + 1 =0 <=> x3(x+2)+x(x+2)+1 = 0
<=> (x3+x)(x+2) + 1=0
1>0
=> (x3+x)(x+2) + 1=0 <=> (x3+x)(x+2) = 0
<=>\(\orbr{\begin{cases}^{x^3+x=0}\\x+2=0\end{cases}}\)<=>\(\orbr{\begin{cases}^{x\left(x^2+1\right)=0}\\x=-2\end{cases}}\) <=>\(\orbr{\begin{cases}^{x=0}\\x=-2\end{cases}}\)
b)
x3+1=\(2\sqrt[3]{2x-1}\)
<=> x^3 - 1 = 2(\(\sqrt[3]{2x-1}\) -1)
<=> (x-1)(x2+x+1) = \(\frac{4\left(x-1\right)}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}\)
<=> (x-1)[(x2+x+1) - \(\frac{1}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}\) ] =0
<=> x=1
4 chia 3 dư 1 nên 4n chia 3 dư 1 hay 4n - 1 chia hết cho 3.
do đó 43^2014 - 1 chia hết cho 3.