K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ad ơi cho em hỏi cách chứng minh ạ. Và ví dụ như khi làm bài có cần chứng minh lại không ạ?

31 tháng 8 2021

Định lý Đào được coi là khó bởi vì nếu tính toán bằng tọa độ Barycentric phải mất khoảng 40 trang xem tại đây: https://groups.yahoo...s/messages/1539. Nikolaos Dergiades đã có 1 cách chứng minh rất đẹp cho định lý này, tuy nhiên nó không hề sơ cấp: Dao’s Theorem on Six Circumcenters associated.pdf

20 tháng 4 2020

2.)\(x^3-10x+1=y^3+6y^2\)(1)

    Đặt\(x=y+b\)với \(b\inℤ\).Ta có:

                                                  (1)\(\Leftrightarrow\)\(y^3+3y^2b+3yb^2+b^3+10y+10b-1=y^2+6y^2\)

                                                      \(\Leftrightarrow\)\(y^2\left(3b-6\right)+y\left(3b^2+10\right)+b^3+10b-1=0\)(1)

                                                \(\Delta=\left(3b^2+10\right)^2-\left(12b-24\right)\left(b^3+10b-1\right)\ge0\)

                                                    \(=-3b^4+24b^3-60b^2+252b+76\)

                                                    \(=1399-3\left(b^2-4b\right)^2-3\left(2b-21\right)^2\ge0\)

Do đó:\(\left(b^2-4b^2\right)+\left(2b-21\right)^2\le466\)

Nhận thấy:\(\left(2b-21\right)^2\le466\)nên \(0\le b\le21\)

Theo phương trình ban đầu thì\(x,y\)khác tính chắn lẻ nên\(b\)lẻ:

          Nếu\(b=1\)thì(1)\(\Leftrightarrow\)\(-3y^2+12y+10\Leftrightarrow y=5\Rightarrow x=6\)

          Nếu\(b=3\)thì(1)\(\Leftrightarrow3y^2+37y+56=0,\)không có nghiệm nguyên

20 tháng 4 2020

\(\Leftrightarrow\)Nếu\(b=5\)thì(1)\(\Leftrightarrow9y^2+85y+174=0\Leftrightarrow y=-3\Rightarrow x==2\)

\(\Leftrightarrow\)Nếu\(b=7\)thì(1)\(\Leftrightarrow\)\(15y^2+157y+412=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=11\)thì(1)\(\Leftrightarrow27y^2+373y+1440=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=13\)thì(1)\(\Leftrightarrow33y^2+517y+2326=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=15\)thì(1)\(\Leftrightarrow39y^2+685+3524=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=17\)thì(1)\(\Leftrightarrow45y^2+877y+5082=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=19\)thì(1)\(\Leftrightarrow51y^2+1093y+7048=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=21\)thì(1)\(\Leftrightarrow57y^2+442y+9479=0\)(Vô Nghiệm)

Vậy phương trình có nghiệm nguyên\(\left(a,b\right)=\left(6,5\right),\left(2,-3\right)\)

P/s:Do bài trên toiii gửi nhầm nên đây là phần tiếp theo của bafi2,Sr:<

_Hoc Tốt_

4 tháng 6 2021

idcm888dkk8cdw6ysgyxdbwdqjhqwuiowqqwudcgqofyhrli2uiy3yuyewiohewuwfwou

4 tháng 6 2021

xin lỗi, chưa học tới lớp 9

Bài 1:Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:a) Góc AHN = ACBb) Tứ giác BMNC nội tiếp.c) Điểm I là trực tâm tam giác APQ.Bài 2:Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là...
Đọc tiếp

Bài 1:

Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:

a) Góc AHN = ACB

b) Tứ giác BMNC nội tiếp.

c) Điểm I là trực tâm tam giác APQ.

Bài 2:

Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh:

a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó.

b) KN là tiếp tuyến của đường tròn (O; R).

c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định.

 

0
Đây là lần đầu tiên mình viết Topic ( mỗi ngày vài bài toán );mình biết còn thơ dại mong các bạn bỏ qua các lỗi nhỏ nhé,với lại tham gia nhiệt tình vào nha !Bài 1:Tìm giá trị nhỏ nhất của \(H=x+y+z\)  biết \(x\ge4;y\ge5;z\ge6;x^2+y^2+z^2\ge90\)Bài 2:Cho các số thực a,b,c,d biết \(\hept{\begin{cases}a+b+c+d=0\\a^3+b^3+c^3+d^3=0\end{cases}}\).Chứng minh rằng trong 4 số sẽ có 1 số bằng 0Bài 3:Cho nửa đường tròn...
Đọc tiếp

Đây là lần đầu tiên mình viết Topic ( mỗi ngày vài bài toán );mình biết còn thơ dại mong các bạn bỏ qua các lỗi nhỏ nhé,với lại tham gia nhiệt tình vào nha !

Bài 1:Tìm giá trị nhỏ nhất của \(H=x+y+z\)  biết \(x\ge4;y\ge5;z\ge6;x^2+y^2+z^2\ge90\)

Bài 2:Cho các số thực a,b,c,d biết \(\hept{\begin{cases}a+b+c+d=0\\a^3+b^3+c^3+d^3=0\end{cases}}\).Chứng minh rằng trong 4 số sẽ có 1 số bằng 0

Bài 3:

Cho nửa đường tròn tâm ( O ) đường kính BC và điểm A trên nửa đường tròn ( O ) ( A khác B,C ).Hạ AH vuông góc với BC ( H thuộc BC ).I,K lần lượt đối xứng với H qua AB,AC.Đường thẳng IK và tia CA cắt tiếp tuyến kẻ từ B của ( O ) lần lượt tại M,N.Gọi E là giao điểm IH và AB, F là giao điểm KH và AC .Chứng minh:


a) I,A,K thẳng hàng và IK là tiếp tuyến của ( O )

b)  \(\frac{1}{BH^2}=\frac{1}{AB^2}+\frac{1}{AN^2}\)


c)  Chứng minh M là trung điểm của BN và MC,AH,EF đồng quy


d)   Xác định A trên nửa đường tròn để \(S_{BIKC}\) đạt giá trị lớn nhất


e)   Chứng minh BE.CF.BC=AH3


f)    Tiếp tuyến tại C của nửa đường tròn ( O ) cắt IK tại P.Chứng mih NO ⊥ PB


g)    Chứng minh AO ⊥ EF


h)    Gọi Q,R lần lượt là giao diểm của OM,OP với AB,AC.Xác định tâm và tính bán kính đường tròn ngoại tiếp tứ giác MPRQ biết \(\widehat{ACB}=30^0\)

Hình vẽ:93418418_559150891386265_9019881176474583040_n.png (699×800)

Câu hình mình lấy trong sách nào đó nhá :) Làm được câu nào post lời giải ngay bên dưới luôn nha !

3
17 tháng 4 2020

bài 1 :

Đặt \(x=4+a;y=5+b;z=6+c\) ( x,y,z \(\ge\)0 )

\(x^2+y^2+z^2=90\Leftrightarrow\left(4+a\right)^2+\left(5+b\right)^2+\left(6+c\right)^2=90\)

\(\Leftrightarrow a^2+b^2+c^2+8a+10b+12c=13\)

Ta có : \(\hept{\begin{cases}a^2+b^2+c^2\le\left(a+b+c\right)^2\\8a+10b+12c\le12\left(a+b+c\right)\end{cases}}\)

\(\Rightarrow13\le\left(a+b+c\right)^2+12\left(a+b+c\right)\)

\(\Rightarrow\left(a+b+c\right)^2+12\left(a+b+c\right)-13\ge0\)

\(\Rightarrow a+b+c\ge1\)

Từ đó suy ra \(x+y+z=4+a+5+b+6+c\ge16\)

Min H = 16 khi x = 4 ; y = 5 ; z = 7

bài 2 :

\(\hept{\begin{cases}a+b+c+d=0\\a^3+b^3+c^3+d^3=0\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=-\left(c+d\right)\\\left(a+b\right)^3+\left(c+d\right)^3-3ab\left(a+b\right)-3cd\left(c+d\right)=0\left(1\right)\end{cases}}}\)

Từ ( 2 ) suy ra \(3ab\left(c+d\right)-3cd\left(c+d\right)=0\)\(\Rightarrow3\left(ab-cd\right)\left(c+d\right)=0\Rightarrow\orbr{\begin{cases}ab=cd\\c+d=0\left(dpcm\right)\end{cases}}\)

với \(ab=cd\Rightarrow\frac{a}{c}=\frac{d}{b}=\frac{a+d}{b+c}=\frac{-\left(b+c\right)}{b+c}=-1\)

\(\Rightarrow a=-c;d=-b\Rightarrow a+c=b+d=0\)( dpcm )

18 tháng 4 2020

bài 3 : 

( hình câu a,b,c,d,e )

a) \(\Delta ABC\)nội tiếp ( O ) đường kính BC nên vuông tại A \(\Rightarrow\widehat{BAC}=90^o\)

Vì I đối xứng với H qua AB ; K đối xứng với H qua AC

\(\Rightarrow\Delta BIA=\Delta BHA\left(c.c.c\right)\)

\(\Rightarrow\widehat{BIA}=\widehat{BHA}=90^o;\widehat{IAB}=\widehat{HAB}\)

tương tự : \(\widehat{AHC}=\widehat{AKC}=90^o;\widehat{HAC}=\widehat{KAC}\)

Ta có : \(\widehat{IAK}=\widehat{IAH}+\widehat{HAK}=2\widehat{BAH}+2\widehat{HAC}=2\widehat{BAC}=180^o\)

suy ra I,A,K thẳng hàng

Ta có : AI = AK ( = AH ) nên A là trung điểm của IK

Dễ thấy BIKC là hình thang vuông có OA là đường trung bình nên \(OA//BI//KC\)nên OA \(\perp\)IK

suy ra IK là tiếp tuyến của ( O )

b) \(\frac{1}{BH^2}=\frac{1}{AB^2}+\frac{1}{AN^2}=\frac{AN^2+AB^2}{AB^2.AN^2}=\frac{BN^2}{AB^2.AN^2}\Leftrightarrow\left(BH.BN\right)^2=\left(AB.AN\right)^2\)

Cần chứng minh BH . BN = AB . AN

vì BN // AH nên \(\widehat{ABN}=\widehat{BAH}\)

\(\Rightarrow\Delta ABH~\Delta BNA\left(g.g\right)\Rightarrow\frac{AB}{BH}=\frac{BN}{AN}\Rightarrow BH.BN=AB.AN\)

\(\Rightarrow dpcm\)

c) Ta có : \(\hept{\begin{cases}OM\perp AB\\AB\perp AC\end{cases}\Rightarrow OM//AC}\)

\(\Delta BNC\)có BO = OC ; OM // NC nên NM = BM hay M là trung điểm của BN

Dễ thấy AEHF là hình chữ nhật nên EF đi qua trung điểm của AH  ( 1 ) 

Xét hình thang ANBH có M là trung điểm của BN ; NA và BH cắt tại C nên MC đi qua trung điểm của AH ( 2 )

Từ ( 1 ) và ( 2 ) suy ra MC,AH và EF đồng quy

d) \(S_{BIKC}=\frac{\left(BI+KC\right).IK}{2}=\frac{\left(BH+HC\right).\left(AI+AK\right)}{2}=\frac{BC.2AH}{2}=2R.AH\)

Để \(S_{BIKC}\)đạt giá trị lớn nhất thì AH max 

Mà AH \(\le R\)\(\Rightarrow S_{BIKC}\)đạt giá trị lớn nhất là \(2R^2\)khi A nằm chính giữa cung BC

e) Áp dụng các hệ thức lượng, ta có :

\(AH^2=BH.HC\)\(BH^2=BE.AB;HC^2=CF.AC;AH.BC=AB.AC\)

\(\Rightarrow AH^4=BH^2.HC^2=BE.AB.CF.AC=AH.BC.BE.CF\)

\(\Rightarrow AH^3=BE.CF.BC\)

12 tháng 7 2018

hình đây

29 tháng 4 2020

Bài 1 t chỉ giải được khi x, y, z cùng dấu. Còn TH x, y, z không cùng dấu thì chưa nghĩ ra (Chắc là giả sử x, y đồng dấu rồi.. chăng?)

1/ Do \(x^2\left(x-1\right)^2\ge0\therefore\frac{x^2}{\left(x+1\right)^2}\ge\frac{3x^2}{4\left(x^2+x+1\right)}\)

Như vậy: \(VT\ge\frac{3}{4}\left(\frac{x^2}{x^2+x+1}+\frac{y^2}{y^2+y+1}+\frac{z^2}{z^2+z+1}\right)\ge\frac{3}{4}\)

\(\Leftrightarrow\frac{x^2}{x^2+x+1}+\frac{y^2}{y^2+y+1}+\frac{z^2}{z^2+z+1}\ge1\) (*) với xyz = 1.

Nếu \(x,y,z>0\) thì đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\) thu được BĐT Vacs.

Nếu \(\left(x,y,z\right)< 0\) thì đặt \(\left(x,y,z\right)\rightarrow\left(-m,-n,-p\right)\left(\text{với }m,n,p>0\right)\)

Cần chứng minh: \(\frac{m^2}{m^2-m+1}+\frac{n^2}{n^2-n+1}+\frac{p^2}{p^2-p+1}\ge1\)

Vì \(m,n,p\ge0\rightarrow VT\ge\frac{m^2}{m^2+m+1}+\frac{n^2}{n^2+n+1}+\frac{p^2}{p^2+p+1}\ge1\)

Đây là BĐT (*). Chứng minh tương tự.

1 tháng 5 2020

tth_new Làm khó m rồi tth :)) thực ra đề thực dương mà t viết thiếu :))))

Cách làm khác mà ko dùng tới bổ đề Vacs 

\(\frac{x^2}{\left(1+x\right)^2}+\frac{y^2}{\left(1+y\right)^2}+\frac{z^2}{\left(1+z\right)^2}\)

\(=\frac{1}{\left(\frac{1}{x}+1\right)^2}+\frac{1}{\left(\frac{1}{y}+1\right)^2}+\frac{1}{\left(\frac{1}{z}+1\right)^2}\)

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\)

Khi đó LHS trở thành:

\(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}+\frac{1}{\left(c+1\right)^2}\)

Mặt khác theo Bunhiacopski ta có:

\(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}\ge\frac{1}{\left(ab+1\right)\left(\frac{a}{b}+1\right)}+\frac{1}{\left(ab+1\right)\left(\frac{b}{a}+1\right)}=\frac{1}{ab+1}\)

Ta cần chứng minh \(\frac{1}{ab+1}+\frac{1}{\left(c+1\right)^2}=\frac{c}{c+1}+\frac{1}{\left(c+1\right)^2}\ge\frac{3}{4}\)

\(\Leftrightarrow\frac{c}{c+1}+\frac{1}{\left(c+1\right)^2}-\frac{3}{4}\ge0\)

\(\Leftrightarrow\frac{\left(c-1\right)^2}{4\left(c+1\right)^2}\ge0\) ( đúng )

Nhớ không nhầm đây là VMO 2005 được nghệ An lấy lại đưa vào đề thi tỉnh nhưng với bậc cao hơn :)))) 

10 tháng 4 2020

đề đau bạn?????

10 tháng 4 2020

Cho tui xin cái đề thì tui ms giúp đc chứ !!!