Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2+22+23...+210 chia hết cho 3
= (2+22)+....+(29+210)
=(2.1+2.2)+...+(29.1+29.2)
=2.(1+2)+...+29+(1+2)
=2.3+...+29.3
=3.(2+23+25+27+29)
Vì 3 chia hết cho 3=>3.(2+23+25+27+29) chia hết cho 3
Mà 3.(2+23+25+27+29) chính là 2+22+23...+210
=>2+22+23...+210 chia hết cho 3
Vậy 2+22+23...+210 chia hết cho 3
Có:
\(A=3^1+3^2+3^3+...+3^{33}\)
\(=\left(3^1+3^3+3^5+...+3^{99}\right)+\left(3^2+3^4+3^6+...+3^{98}\right)\)
Có 50 số hạng Có: 49 số hạng
\(=\left(3^1+3^3\right)+\left(3^5+3^7\right)+...+\left(3^{97}+3^{99}\right)+\left(3^2+3^4\right)+\left(3^6+3^8\right)+...+\left(3^{94}+3^{96}\right)+3^{98}\)
\(=3\left(1+9\right)+3^5\left(1+9\right)...+3^{97}\left(1+9\right)+3^2\left(1+9\right)+3^6\left(1+9\right)+...+3^{94}\left(1+9\right)+3^{98}\)
\(=3.10+3^5.10+...+3^{97}.10+3^2.10+3^6.10+...+3^{94}.10+3^{98}\)
\(=10\left(3+3^5+...+3^{97}\right)+10\left(3^2+3^6+...+3^{94}\right)+3^{98}\)không chia hết cho 10.
Bài 1:
a) +) \(A=2+2^2+...+2^{2004}\)
\(\Rightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2003}+2^{2004}\right)\)
\(\Rightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2003}\left(1+2\right)\)
\(\Rightarrow A=2.3+2^3.3+...+2^{2003}.3\)
\(\Rightarrow A=\left(2+2^3+...+2^{2003}\right).3⋮3\)
\(\Rightarrow A⋮3\left(đpcm\right)\)
+) \(A=2+2^2+...+2^{2004}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{2002}+2^{2003}+2^{2004}\right)\)
\(\Rightarrow A=2\left(1+2+2^2\right)+...+2^{2002}\left(1+2+2^2\right)\)
\(\Rightarrow A=2.7+...+2^{2002}.7\)
\(\Rightarrow A=\left(2+...+2^{2002}\right).7⋮7\)
\(\Rightarrow A⋮7\left(đpcm\right)\)
+) \(A=2+2^2+....+2^{2004}\)
\(\Rightarrow A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{2001}+2^{2002}+2^{2003}+2^{2004}\right)\)
\(\Rightarrow A=2\left(1+2+2^2+2^3\right)+...+2^{2001}\left(1+2+2^2+2^3\right)\)
\(\Rightarrow A=2.15+...+2^{2001}.15\)
\(\Rightarrow A=\left(2+...+2^{2001}\right).15⋮15\)
\(\Rightarrow A⋮15\left(đpcm\right)\)
b) \(B=1+3+3^2+...+3^{99}\)
\(\Rightarrow B=\left(1+3+3^2+3^3\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(\Rightarrow B=\left(1+3+9+27\right)+...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow B=40+...+3^{96}.40\)
\(\Rightarrow B=\left(1+...+3^{96}\right).40⋮40\)
\(\Rightarrow B⋮40\left(đpcm\right)\)
Vì n là số tự nhiên nên n có dạng:
n=2k hoặc n= 2k+1 ( k ∈N∈N)
Với n=2k thì: (n+3)(n+12) = (2k+3)(2k+12)
= 2(2k+3)(k+6)⋮⋮2
⇒⇒(n+3)(n+12) ⋮2⋮2
Với n = 2k+1 thì: (n+3)(n+12)= (2k+1+3)(2k+1+12)
= (2k+4)(2k+13)
= 2(k+2)(2k+13)⋮2⋮2
⇒⇒ (n+3)(n+12)⋮2⋮2
Vậy (n+3)(n+12) là số chia hết cho 2 với mọi số tự nhiên n
\(A=1+3+3^2+3^3+...+3^{99}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)\)
\(=4+3^2.\left(1+3\right)+...+3^{98}.\left(1+3\right)\)
\(=4+3^2.4+...+3^{98}.4\)
\(=4.\left(1+3^2+...+3^{98}\right)\) chia hết cho 4
=> A chia hết cho 4 (đpcm).
= 1+3+32+33+..........+399+3100
=(1+3)+(32+33+...........+399+3100)
=3100-4 chia het cho 4
=> A = ( 3 - 32 ) + ( 33 - 34 ) + .... + ( 399 - 3100 )
=> A = 3.( 1 - 3 ) + 33.( 1 - 3 ) + ..... + 399.( 1 - 3 )
=> A = 3.( - 2 ) + 33.( - 2 ) + .... + 399.( - 2 )
=> A = - 2 .( 3 + 33 + ..... + 399 )
Vì - 2 ⋮ 2 => A ⋮ 2 ( đpcm )
Ta có
\(3+3^2+3^3+...+3^{99}⋮3\)
\(\Rightarrow A=1+3+3^2+3^3+...3^{99}\) không chia hết cho 3
Mà 12 thì chia hết cho 3
\(\Rightarrow\) A không chia hết cho 12
Vậy không hể chứng minh A chia hết cho 12v
Bài giải
\(A=1+3+3^2+...+3^{99}\)
\(3A=3+3^2+3^3+...+3^{100}\)
\(3A-A=2A=3^{100}-1\text{ }\Rightarrow\text{ }A=\frac{3^{100}-1}{2}⋮̸\text{ }3\)
Mà \(12\text{ }⋮\text{ }3\) nên \(A\text{ }⋮̸\text{ }12\)