Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10^12 -1 = 99....9999(11 cs 9)
ta có : tổng các cs của 99999...999(11 cs9) là : 9+9+9...+9=99
vì 99 chia hết cho 3, 9 nên 10^12-1 chia hết cho 3,9
a)Ta có
2^20-2^17 = 2^17 . 2^3 - 2^17 .1
= 2^17 .( 2^3 - 1)
= 2^17 . 7 chia hết cho 7
b)Ta có
10^6 + 5^7 =2^6 . 5^6 + 5^6 . 5
= 5^6. (2^6+ 5)
= 5^6 . 69
......
tới đây mink hết biết r bn tự giải tiếp đi nha!
giả sử a chia hết cho 5
=>a2 chia hết cho 5
=>a2-1 không chia hết cho 5
nếu a2-1 chia hết cho 5
=>a2 đồng dư với 1(mod 5)
=>a đồng dư với -1 hoặc 1(mod 5)
=>a có tận cùng là 4;6;1;9
=>đpcm
^-^
a/ Ta có :
\(9^{1945}-2^{1930}=\left(9^5\right)^{389}-\left(2^{10}\right)^{193}=\left(.....9\right)-\left(.....4\right)=\left(............5\right)⋮5\)
\(\Leftrightarrowđpcm\)
\(A=9^{n+2}+3^{n+2}-9^n+3^n\)
\(=9^n\left(9^2-1\right)+3^n\left(3^2+1\right)\)
\(=9^n\times80+3^n\times10=10\left(9^n\times8+3^n\right)⋮10\) (đpcm)