K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2015

a) Khi chia 1 số tự nhiên cho 2, số dư có thể là 0  hoặc 1

=> Khi chia 3 số tự nhiên bất kì cho 2 số dư bằng một trong hai số 0; 1. 

=> 2 trong 3 số đó có cùng số dư => Hiệu của 2 số chia hết cho 2

b) Khi chia 1 số tự nhiên cho 5, số dư có thể là 0; 1; 2; 3; 4

=> Khi chia 6 số tự nhiên bất kì cho 5,  số dư  bằng1 trong 5 số 0; 1; 2; 3; 4.

=> Chắc chắn có 2 trong 6 số đó chia cho 5 có cùng số dư

=> Hiệu của chúng chia hết cho 5

Vậy...

 

1 tháng 11 2016

Gửi câu trả lời của bạn

Hãy gửi một câu trả lời để giúp Trần Diệu Linh giải bài toán này, bạn có thể nhận được điểm hỏi đáp và phần thưởng của Online Math dành cho thành viên tích cực giúp đỡ các bạn khác trên Online Math!
             
 
6 tháng 1 2019

Dùng nguyên lí Dirichle bạn ạ

Số dư khi chia chia cho 4 chỉ có thể là một trong các số 0 ; 1 ; 2 ;3 

Nên trong 5 số bất kì đó phải tồn tại 2 số có cùng số dư khi chia cho 4

=> hiệu 2 số này chia hết cho 4

15 tháng 1 2016

Đem 12 stn cha cho 11 thì nhận đc 12 số dư  .Mà 1 stn khi chia cho 11 se nhận đc trog  11 khả năng dư [ 0 đến 10 ]
ta có :
12/11=1 (dư 1)
Theo nguyên lí dircle sẽ tồn tại ít nhất 1+1=2 (số dư = nhau )
Nghĩa là sẽ có  2 stn khi chia cho 11 có cùng số dư

=> Hiệu 2 số đó chia hết cho 11

Chả bjt có đúng k .Nhưng mik nghĩ là 98%

10 tháng 8 2017

khi chia mot so tu nhien cho 5,so du co the la 1,2,3,4

suy ra:khi chia bat ki 6 so tu nhien cho 5,so du bang 1 trong 5 so tu 0 den 4 

suy ra:co 2 trong 6 so do chia cho 5 co cung so du 

suy ra;hieu cua chung chia het cho 5

10 tháng 8 2017

Đề sai nha bạn. Vì là 6 số tự nhiên bất kỳ nên mình cho ví dụ này nhé: 1;3;5;7;9;11. Trong 6 số trên không có hiệu 2 số nào chia hết cho 5. Phải là 6 số tự nhiên liên tiếp mới được nha bạn.

10 tháng 8 2017

Cái này sai nha bạn, liên tiếp thì được chứ bất kỳ thì không được. Ví dụ: cho 6 số đó là : 1 ; 3 ; 5 ; 7 ; 9 ; 11.

Không có cặp số nào có hiệu chia hết cho 5 nha bạn.

Ta có mọi số khi chia cho 2 chỉ có 2 số dư là 0 và 1

Mà có 3 số tự nhiên nên theo nguyên lý dirichle thì có ít nhất 2 số có cùng số dư

suy ra hiệu của chúng chia hết cho 2(điều phải chứng minh)

6 tháng 1 2015

Theo Nguyên lí Đi-rich-lê thì trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11 nên =>trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11

9 tháng 1 2015

Đem 12 số tự nhiên trên chia cho 11 thì nhận đc 12 số dư. Mà 1 số tự nhiên khi chia cho 11 sẽ nhận đc 1 trong 11 khả năng dư[0 đến 10].

Ta có 12:11=1[dư 1]

Theo nguyên lí điricle sẽ tồn tại ít nhất

1+1=2[ số dư bằng nhau]

Nghĩa là tồn tại ít nhất 2 số tự nhiên khi chia 11 có cùng số dư. Suy ra hiệu 2 số đó chia hết cho 11

Vậy bài toán đã được chứng minh

14 tháng 10 2015

Gọi 3 số cần tìm là a;a+1;a+2

Dễ thấy rằng;

a+2-a=2 chia hết cho 2

Vậy.....................................................