Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn muốn biết có chia hết cho mười không thì ban phải quan tâm đến số cuối cùng , nếu nó là 0 thì chia hết cho 10
Số cuối cùng của \(^{17^{1997}}\):
\(17^{1997}\)= \(17^4\)x \(17^{1993}\)
\(17^4\) có số tận cùng là 1
Vì số cuối là 1 nên số cuối của lũy thừa này bằng 1
Số cuối cùng của \(24^{1996}\)
Cơ số có số cuối là 4
\(4^1\)=4
\(4^2\)=16
\(4^3\)=64
\(4^4\)=256
Vậy ta có thể suy ra nếu 4 có số mũ lẻ thì số tận cùng là 4
Nếu mũ chẳn thì số tận cùng là 6
\(24^{1996}\) có số mũ là số chẵn nên chữ số tận cùng la 6
Số tận cùng của \(33^{2001}\)
\(3^3\)số cuối la 7
\(3^7\)số cuối là 7
\(3^{11}\)số cuối là 7
Từ \(3^3\)cứ cách đều hàng mũ cho đến mũ 2001 thì số cuối la 7
Bài toán trên ta chỉ cần rút cacas lũy thừa thành số mũ của nó
Ta có : 1 + 6 -7 = 0
Vì nếu có số 0 cuối cùng thì có thể chia hết cho 10
a, 5200 + 5199 + 5198 = 5198.(1+5+52) = 5198.31 chia hết cho 31 (đpcm)
b, 32001+32000+31999 = 31998.(3+32+33) = 31998.39 chia hết cho 39 (đpcm)
Ta có : A=(2+2^2)+(2^3+2^4)+...+(2^119+2^200)
A=2(1+2)+2^3(1+2)+...+2^119(1+2)
A=3(2+2^3+...+2^119) suy ra A chia hết cho 3
Còn 7 nhóm 3 số đầu rùi giải TT
a) \(A=2+2^2+2^3+...+2^{200}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{199}+2^{200}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{199}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{199}.3\)
\(=3.\left(2+2^3+...+2^{199}\right)\)chia hết cho 3
b) Tương tự câu a nhưng bạn phải gộm 3 số lại
Sorry bạn, mk ko viết đc ký hiệu đồng dư nên bạn hiểu (=) là đồng dư nhé!
2003 (=) 1 (mod 7) \(\Rightarrow\) 2003 chia 7 dư 1
2004 (=) 2003 . 200 (=) 1 . 4 (mod 7) \(\Rightarrow\) 2004 chia 7 dư 4
2007 chia 7 dư 5
\(\Rightarrow\) Biểu thức trên chia 7 dư 3