K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

a) Gọi ƯCLN(n + 1 ; 2n + 3) = d

=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau 

=> \(\frac{n+1}{2n+3}\)là phân số tối giản

b) Gọi ƯCLN (2n + 1 ; 3n + 2) = d

=> \(\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\Rightarrow6n+4-\left(6n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

=> 2n + 1 ; 3n + 2 là 2 số nguyên tố cùng nhau

=> \(\frac{2n+1}{3n+2}\)là phân số tối giản

c) Gọi ƯCLN(14n + 3; 21n + 5) = d

Ta có : \(\hept{\begin{cases}14n+3⋮d\\21n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(14n+3\right)⋮d\\2\left(21n+5\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}42n+9⋮d\\42n+10⋮d\end{cases}}\Rightarrow\left(42n+10\right)-\left(42n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

=> 14n + 3 ; 21n + 5 là 2 số nguyên tố cùng nhau

=> \(\frac{14n+3}{21n+5}\) là phân số tối giản

d) Gọi ƯCLN(25n + 7 ; 15n + 4) = d

=> \(\hept{\begin{cases}25n+7⋮d\\15n+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6\left(25n+7\right)⋮d\\10\left(15n+4\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}150n+42⋮d\\150n+40⋮d\end{cases}}\Rightarrow\left(150n+42\right)-\left(150n+40\right)⋮d\Rightarrow2⋮d\)

=> \(d\in\left\{1;2\right\}\)

Nếu n lẻ => 2n + 7 chẵn ; 15n + 4 lẻ 

=> ƯCLN(2n + 7 ; 5n + 4) = 1

Nếu n chẵn => 25n + 7 lẻ  ; 15n + 4 chẵn

=> ƯCLN(2n + 1 ; 15n + 4) = 1

=> d khái 2 <=> d = 1

=> \(\frac{2n+7}{15n+4}\)là phân số tối giản

25 tháng 7 2015

ta có n4+3n2+1=(n3+2n)n+n2+1

n3+2n=(n2+1)n+n

n2+1=n.n+1

n=1.n

vậy ucln(n4+3n2+1, n3+2n)=1(đpcm)

18 tháng 3 2018

Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d. =>n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d. do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết chod hay n^2 +1 chia hết cho d (1). => (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d. => (n^4+3n^2+1) ...

18 tháng 3 2018

Bài 1 : 

Ta có : 

\(\frac{3n-5}{3-2n}=\frac{3n-5}{-\left(2n-3\right)}\)

Gọi \(ƯCLN\left(3n-5;3-2n\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}3n-5⋮d\\-\left(2n-3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-5\right)⋮d\\-3\left(2n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-10⋮d\\-6n+9⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(6n-10\right)+\left(-6n+9\right)⋮d\)

\(\Rightarrow\)\(\left(6n-6n\right)\left(-10+9\right)⋮d\)

\(\Rightarrow\)\(\left(-1\right)⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)\)

Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(3n-5;3-2n\right)=\left\{1;-1\right\}\)

Vậy \(\frac{3n-5}{3-2n}\) là phân số tối giản với mọi số nguyên n 

Chúc bạn học tốt ~ 

6 tháng 7 2021

Gọi d là (2n+5;3n+7)

\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)

=> [6n+15 - ( 6n+14 )] \(⋮\) d 

=> 1 \(⋮\)d

=> phân số trên tối giản 

AH
Akai Haruma
Giáo viên
27 tháng 7 2024

Lời giải:

Giả sử phân số đã cho không tối giản.
Gọi $p$ là ước nguyên tố chung của của $n^3+2n, n^4+3n^2+1$

$\Rightarrow n^3+2n\vdots p$
$\Rightarrow n(n^2+2)\vdots p$

$\Rightarrow n\vdots p$ hoặc $n^2+2\vdots p$.

Nếu $n\vdots p$. Kết hợp với $n^4+3n^2+1\vdots p\Rightarrow 1\vdots p$

$\Rightarrow p=1$ (không tm vì $p$ là snt) 

Nếu $n^2+2\vdots p$.

Kết hợp với $n^4+3n^2+1\vdots p$

$\Rightarrow n^2(n^2+2)+(n^2+2)-1\vdots p$

$\Rightarrow 1\vdots p\Rightarrow p=1$ (không tm vì $p$ là snt)

Vậy điều giả sử không đúng.

$\Rightarrow$ phân số đã cho tối giản.

5 tháng 3 2017

kích nha

29 tháng 4 2017

\(\frac{n+1}{2n+3}\)

Gọi ƯCLN(n + 1, 2n + 3) là a

Ta có:

n + 1\(⋮\)a

\(\Rightarrow\)2(n + 1)\(⋮\)a

\(\Leftrightarrow\)2n + 2\(⋮\)a

2n + 3\(⋮\)a

\(\Rightarrow\)(2n + 3) - (2n + 2)\(⋮\)a

\(\Rightarrow\)1\(⋮\)a

\(\Rightarrow\)a = 1

29 tháng 4 2017

\(\frac{2n+1}{3n+2}\)

Gọi ƯCLN(2n + 1, 3n + 2) là b

Ta có:

2n + 1\(⋮\)b

\(\Rightarrow\)3.(2n + 1)\(⋮\)b

\(\Leftrightarrow\)6n + 3\(⋮\)b (1)

3n + 2\(⋮\)b

\(\Rightarrow\)2.(3n + 2)\(⋮\)b

\(\Leftrightarrow\)6n + 4\(⋮\)b (2)

Từ (1), (2) ta có:

(6n + 4) - (6n + 3)\(⋮\)b

\(\Leftrightarrow\)1\(⋮\)b

\(\Rightarrow\)b = 1

Vậy ƯCLN(2n + 1, 3n + 2) là 1

\(\Rightarrow\)Phân số tối giản