K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

Đặt \(A=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{2014\cdot2017}\)

\(\Rightarrow A=\frac{1}{3}\cdot\left(\frac{3}{1\cdot3}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{2014\cdot2017}\right)\)

\(\Rightarrow A=\frac{1}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2014}-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{3}\cdot\left(1-\frac{1}{2017}\right)=\frac{1}{3}-\frac{1}{6051}< \frac{1}{3}\)

\(\Rightarrow A< \frac{1}{3}\left(ĐPCM\right)\)

30 tháng 4 2019

Ta có :

\(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{2014.2017}\)

\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{2014.2017}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2014}-\frac{1}{2017}\right)\)

\(=\frac{1}{3}\left(1-\frac{1}{2017}\right)\)

\(=\frac{1}{3}.\frac{2016}{2017}< \frac{1}{3}\left(đpcm\right)\)

5 tháng 4 2017

ai tk mk thì mk tk lại

3 tháng 4 2016

nhớ k nha

1/4.7+1/7.10+...+1/73.76=1/3.(3/4.7+3/7.10+..+3/73.76)

=1/3.(1/4-1/7+1/7-1/10+1/10-......+1/73-1/76)

=1/3.(1/4-1/76)

=1/3.9/38=3/38

nhớ k nha

3 tháng 4 2016

\(=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{73}-\frac{1}{76}\)

\(=\frac{1}{4}-\frac{1}{76}\)

\(=\frac{9}{38}\)

5 tháng 5 2020

Ta có 

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)

\(S=1-\frac{1}{n+3}< 1\)(vì n thuộc N*)

_Kudo_

5 tháng 5 2020

Cảm ơn bn

4 tháng 2 2020

A = \(\frac{1}{1.4}\)\(\frac{1}{4.7}\)+\(\frac{1}{7.10}\)+...+ \(\frac{1}{2014.2017}\)
3A = \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{2014.2017}\)
3A = \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{2014}-\frac{1}{2017}\)
3A= 1 - \(\frac{1}{2017}\)
A = \(\frac{1}{3}-\frac{1}{2017.3}\)
A = \(\frac{672}{2017}\)

4 tháng 2 2020

Ta có \(A=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2014.2017}\)

\(\Rightarrow A=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2014}-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{3}.\left(1-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{3}.\frac{2016}{2017}=\frac{672}{2017}\)

Vậy \(A=\frac{672}{2017}\)

~ Học tốt

# Chiyuki Fujito

21 tháng 3 2020

Ta có: \(c=\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+....+\frac{1}{37\cdot40}\)

\(\Leftrightarrow3c=3\left(\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+...+\frac{1}{37\cdot40}\right)\)

\(\Leftrightarrow3c=\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{37\cdot40}\)

Mà \(\frac{3}{4\cdot7}=\frac{1}{4}-\frac{1}{7}\)

\(\frac{3}{7\cdot10}=\frac{1}{7}-\frac{1}{10}\)

...

\(\Leftrightarrow3c=\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{37\cdot40}\)

\(=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{37}-\frac{1}{40}\)

Ta thấy ngoại trừ hai phân số đầu tiên và cuối cùng thì tất cả các phân số còn lại đều có 1 phân số có cùng giá trị tuyệt đối nhưng ngược dấu đứng cạnh, mà tổng hai số ngược dấu bằng 0 nên ta nhóm các phân số ngược dấu thì được:

\(3c=\frac{1}{4}-\frac{1}{40}\Leftrightarrow c=\left(\frac{1}{4}-\frac{1}{40}\right)\cdot\frac{1}{3}\)

\(=\frac{9}{40}\cdot\frac{1}{3}=\frac{3}{40}=\frac{9}{120}< \frac{40}{120}\)

Mà \(\frac{40}{120}=\frac{1}{3}\Rightarrow c< \frac{1}{3}\)

NM
10 tháng 3 2022

ta nhân 3 cả hai vế, được : 

\(\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{102.105}\right)x=3\)

hay 

\(\left(\frac{4-1}{1.3}+\frac{7-4}{4.7}+...+\frac{105-102}{102.105}\right)x=3\) \(\Leftrightarrow\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+..+\frac{1}{102}-\frac{1}{105}\right)x=3\)

\(\Leftrightarrow\left(1-\frac{1}{105}\right)x=3\Leftrightarrow\frac{104}{105}.x=3\Leftrightarrow x=\frac{315}{104}\)

24 tháng 4 2017

1/1*4+1/4*7+1/7*10+...+1/2010*2013=A

3A=3/1*4+3/4/*7+3/7*10+...+3/2010*2013

3A=1-1/4+1/4-1/7+1/7-1/10+...+1/2010-1/2013

3A=1-1/2013<1

Suy ra : A <1/3

Nho k cho minh voi nhe

25 tháng 4 2017

Thank bạn nhìu nha ^-^ Chúc bạn học tốt

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{43}-\frac{1}{46}..\)

\(S=1-\frac{1}{46}< 1\)

VẬY S<1

30 tháng 4 2017

\(S=\frac{3}{1.4} +\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{40.43}+\frac{3}{43.46}\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(S=1-\frac{1}{46}\)

=> S<1 (ĐCCM)