K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2015

Ta có: 2a - 3b chia hết cho 13 => 9.(2a - 3b) chia hết cho 13 => 18a - 27b chia hết cho 13

Lại có: (18a - 27b) + (8a - b) = 18a - 27b + 8a - b = 26a - 26b = 13.(2a - 2b) chia hết cho 13

=> (18a - 27b) + (8a - b) chia hết cho 13

mà 18a - 27b chia hết cho 13

=> 8a - b chia hết cho 13 (đpcm)

31 tháng 10 2015

câu hỏi tương tự có ngay

31 tháng 10 2015

1) Gọi số cần tìm là A(A thuộc N)

Vì A chia 4 dư 3, ... nên A + 8 chia hết cho 4, 17, 19.

=> A + 8 chia hết cho 1292 (ƯCLN(4; 17; 19) = 1)

Số dư của A khi chia cho 1292 là:

1292 - 8 = 1284

Vậy A chia 1292 dư 1284.

2) Vì 2a - 3b chia hết cho 13 nên 4(2a - 3b) chia hết cho 13.

Xét tổng:

4(2a - 3b) - (8a - b)

= 8a - 12b - 8a + b

= (12b + b) - (8a - 8a) 

= 13b chia hết cho 13.

Mà 4(2a -3b) chia hết cho 13 nên 8a - b chia hết cho 13(ĐPCM)

Tick ủng hộ mình nha

11 tháng 8 2016

mình là 1292 k

3 tháng 10 2024

abc = a . 100 + b . 10 + c
       = (a . 98 + b . 7) + 2 . a + 3 . b + a
  Ta có : a.98 + b.7 chia hết cho 7
 => 2a + 3b + c chia hết cho 13 

20 tháng 1 2019

a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)

Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)

b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)

Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7

20 tháng 1 2019

Mất 20 phút để làm cái bài này , đánh máy mỏi tay quá gianroi

Giả sử: abc¯¯¯¯¯¯¯+(2a+3b+c)abc¯+(2a+3b+c)chia hết cho7, ta có:

abc¯¯¯¯¯¯¯+(2a+3b+c)=a.100+b.10+c+2a+3b+c=a.98+7.babc¯+(2a+3b+c)=a.100+b.10+c+2a+3b+c=a.98+7.b

Vì a.98a.98 chia hết cho 7(98 chia hết cho 7)7.b7.b chia hết cho 7 ⇒a.98+b.7⇒a.98+b.7 chia hết cho 7

⇒abc¯¯¯¯¯¯¯+(2a+3b+c)⇒abc¯+(2a+3b+c)chia hết cho 7

Mà theo đầu đề bài abc¯¯¯¯¯¯¯abc¯chia hết cho 7 => 2a+3b+c chia hết cho 7

14 tháng 2 2020

Ta có : 2a+3b\(⋮\)7

\(\Rightarrow\)4(2a+3b)\(⋮\)7

\(\Rightarrow\)8a+12b\(⋮\)7

\(\Rightarrow\)8a+5b+7b\(⋮\)7

Vì 7b\(⋮\)7

\(\Rightarrow\)8a+5b\(⋮\)7

Vậy 8a+5b\(⋮\)7.

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

2 tháng 12 2017

a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^

11 tháng 7 2019

Bạn tham khảo link này nhé!

Câu hỏi của Nguyễn Đình Dũng - Toán lớp 6 - Học toán với OnlineMath