K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

\(\frac{2n+3}{3n+3}=\frac{\left(2n+2\right)+1}{3n+3}=\frac{2\left(n+1\right)+1}{3\left(n+1\right)}=\frac{2}{3}+\frac{1}{3n+1}\left(n\in N\right)\)

19 tháng 7 2016

Gọi d là UCLN(2n+3;3n+3)

Ta có:

[3(2n+3)]-[2(3n+3)] chia hết d

=>[6n+9]-[6n+6] chia hết d

=>3 chia hết d

=>d thuộc Ư(3)={1;3}

Mà với d=3 =>ps ko tối giản =>d=1

=>ps tối giản

9 tháng 3 2021

Đặt \(n+1;2n+3=d\)

\(n+1⋮d\Rightarrow2n+2\)(1)

\(2n+3⋮d\)(2)

Lấy 2 - 1 ta có : 

\(2n+3-2n-2⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ta có đpcm

Bài 1 : Đặt \(d=Ư\left(n+1;2n+3\right)\)

Từ đó \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}}2n+3-\left(2n+2\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy mọi phân số dạng \(\frac{n+1}{2n+3}\left(n\inℕ\right)\) đều là phân số tối giản

Bài 2 : Đặt \(d=Ư\left(2n+3;3n+5\right)\)

Từ đó \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}\Leftrightarrow}6n+10-\left(6n-9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1}\)

Vậy mọi phân số dạng \(\frac{2n+3}{3n+5}\left(n\inℕ\right)\) đều là phân số tối giản.

14 tháng 2 2019

Bạn ơi có sai đề không?Bởi nếu n là số lẻ thì cả n+1 và n+3 đều là số chẵn ,đều chia hết cho 2 và có thể rút gọn mà,sao là phân số tối giản được

10 tháng 2 2018

Gọi \(ƯCLN\left(n+1;2n+3\right)\)là d.Ta có:

\(n+1⋮d\Rightarrow2n+2⋮d\)

\(2n+3⋮d\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy p/s tối giản

14 tháng 3 2021

Gọi ƯCLN(n + 1 ; n + 2) = d\(\left(d\inℕ\right)\)

=> \(\hept{\begin{cases}n+1⋮d\\n+2⋮d\end{cases}}\Rightarrow\left(n+2\right)-\left(n+1\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

=> n + 1 ; n + 2 là 2 số nguyên tố cùng nhau

=> \(\frac{n+1}{n+2}\) là phân số tối giản

b) Gọi ƯCLN(2n + 3 ; 3n + 5) = d (d \(\inℕ\))

=> \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

=> \(1⋮d\Rightarrow d=1\)

=> 2n + 3 ; 3n + 5 là 2 số nguyên tố cùng nhau

=> \(\frac{2n+3}{3n+5}\) là phân số tối giản

14 tháng 3 2021

a) Gọi ƯC( n + 1 ; n + 2 ) = d

=> n + 2 ⋮ d và n + 1⋮ d

=> n + 2 - ( n - 1 ) ⋮ d

=> 1 ⋮ d => d = 1

=> ƯCLN( n + 1 ; n + 2 ) = 1

hay n+1/n+2 tối giản ( đpcm )

b) Gọi ƯC( 2n + 3 ; 3n + 5 ) = d

=> 2n + 3 ⋮ d và 3n + 5 ⋮ d

=> 6n + 9 ⋮ d và 6n + 10 ⋮ d

=> 6n + 10 - ( 6n + 9 ) ⋮ d

=> 1 ⋮ d => d = 1

=> ƯCLN( 2n + 3 ; 3n + 5 ) = 1

hay 2n+3/3n+5 tối giản ( đpcm )

20 tháng 2 2016

2n+1chia hết cho d ; 4n+6 chia hết cho d suy ra 2n+3 chia hết cho d

suy ra (2n+3)-(2n+1) chia hết cho d suy ra 2 chia hết cho d hay d thuộc U(2)={2;-2;1;-1}

vì 2n+1 là số lẻ nên d={1;-1}

suy ra 2n+1phần 4n+6 là phân số tối giản

16 tháng 7 2017

2n+1chia hết cho d ; 4n+6 chia hết cho d suy ra 2n+3 chia hết cho d

suy ra (2n+3)-(2n+1) chia hết cho d suy ra 2 chia hết cho d hay d thuộc U(2)

={2;-2;1;-1}

vì 2n+1 là số lẻ nên d={1;-1}

suy ra 2n+1phần 4n+6 là phân số tối giản