Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng tỏ rằng các phân sô sau tối giản với mọi phân số:
\(A,\frac{n+1}{2n+3}\)\(B,\frac{2n+3}{4n+8}\)
a) Vì phân số n+1/2n+3 tối giản với mọi phân số nên ƯCLN(n+1; 2n+3) =1. Gọi ƯCLN(n+1; 2n+3) = d
=> n+1 \(⋮\)d
2n+3 \(⋮\)d
=> 2(n+1) \(⋮\)d
2n+ 3 \(⋮\)d
=> 2n+2 \(⋮\)d
2n+3 \(⋮\)d
=> 2n+3 - 2n -2 \(⋮\)d
=> 1 \(⋮\)d
=> d =1
Vì d= 1 nên phân số n+1/2n+3 là phân số tối giản
Phần b cũng thế nha
Gọi ƯCLN(n + 1 ; 2n + 3) = d
=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)
=> \(1⋮d\Rightarrow d=1\)
=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{n+1}{2n+3}\) là phân số tối giản
b Gọi ƯCLN(2n + 3 ; 4n + 8) = d
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d}\)
=> \(2⋮d\Rightarrow d\inƯ\left(2\right)\Rightarrow d\in\left\{1;2\right\}\)
Vì \(2n+3\)là số lẻ với mọi n nguyên
=> 2n + 3 không chia hết cho 2
=> \(d\ne2\)=> d = 1
Khi d = 1 , 2n + 3 ; 4n + 8 là 2 số nguyên tố cùng nhau
=> B là phân số tối giản
a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)
=> n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n+1; 2n+3) = 1
=> n + 1 và 2n + 3 là 2 số nguyên tố cùng nhau
Câu b lm tương tự
\(\frac{n+3}{n+4}\)
Gọi d=U7CLN(n+3,n+4)
\(\Rightarrow\hept{\begin{cases}\left(n+3\right)⋮d\\\left(n+4\right)⋮d\end{cases}}\)
\(\Leftrightarrow\left(n+4\right)-\left(n+3\right)⋮d\)
\(\Leftrightarrow1⋮d\) \(\Leftrightarrow d=1\)
Vậy \(\frac{n+3}{n+4}\)là phân số tối giản
( *Bạn làm theo pp: Phân số tối giản khi U7CLN(tử,mẫu)=1
*Cái dòng (n+4) - (n+3) thì mấy bài tương tự, cái dòng đó ta sẽ lấy số lớn trừ số nhỏ chứ không nhất thiết phải lấy số dưới trừ số trên)
Mấy bài kia bạn làm tương tự nha! Chúc bạn học giỏi!!!
a) Đặt \(d=\left(4n+7,5n+9\right)\)
Suy ra
\(\hept{\begin{cases}4n+7⋮d\\5n+9⋮d\end{cases}}\Rightarrow4\left(5n+9\right)-5\left(4n+7\right)=1⋮d\Rightarrow d=1\)
Do đó ta có đpcm.
b) Đặt \(d=\left(4n^2+12n+1,n+3\right)\)
Suy ra
\(\hept{\begin{cases}4n^2+12n+1⋮d\\n+3⋮d\end{cases}}\Rightarrow4n^2+12n+1-4n\left(n+3\right)=1⋮d\Rightarrow d=1\)
Do đó ta có đpcm.
a, \(\frac{n+2}{n+3}\)
Gọi \(d=ƯCLN\left(n+2,n+3\right)\)
\(\Rightarrow\hept{\begin{cases}n+2⋮d\\n+3⋮d\end{cases}}\)
\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy phân số \(\frac{n+2}{n+3}\)là p/số tối giản
b, \(\frac{n+1}{2n+3}\)
Gọi \(d=ƯCLN\left(n+1,2n+3\right)\)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy...
Bài 2:
a)Gọi UCLN(14n+3;21n+4) là d
Ta có:
[3(14n+3)]-[2(21n+4)] chia hết d
=>[42n+9]-[42n+8] chia hết d
=>1 chia hết d
=>d=1. Suy ra 14n+3 và 21n+4 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
b)Gọi UCLN(12n+1;30n+2) là d
Ta có:
[5(12n+1)]-[2(30n+2)] chia hết d
=>[60n+5]-[60n+4] chia hết d
=>1 chia hết d. Suy ra 12n+1 và 30n+2 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
c)Gọi UCLN(3n-2;4n-3) là d
Ta có:
[4(3n-2)]-[3(4n-3)] chia hết d
=>[12n-8]-[12n-9] chia hết d
=>1 chia hết d. Suy ra 3n-2 và 4n-3 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
d)Gọi UCLN(4n+1;6n+1) là d
Ta có:
[3(4n+1)]-[2(6n+1)] chia hết d
=>[12n+3]-[12n+2] chia hết d
=>1 chia hết d. Suy ra 4n+1 và 6n+1 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
\(\frac{n+1}{2n+3}\)
Gọi ƯCLN(n + 1, 2n + 3) là a
Ta có:
n + 1\(⋮\)a
\(\Rightarrow\)2(n + 1)\(⋮\)a
\(\Leftrightarrow\)2n + 2\(⋮\)a
2n + 3\(⋮\)a
\(\Rightarrow\)(2n + 3) - (2n + 2)\(⋮\)a
\(\Rightarrow\)1\(⋮\)a
\(\Rightarrow\)a = 1
\(\frac{2n+1}{3n+2}\)
Gọi ƯCLN(2n + 1, 3n + 2) là b
Ta có:
2n + 1\(⋮\)b
\(\Rightarrow\)3.(2n + 1)\(⋮\)b
\(\Leftrightarrow\)6n + 3\(⋮\)b (1)
3n + 2\(⋮\)b
\(\Rightarrow\)2.(3n + 2)\(⋮\)b
\(\Leftrightarrow\)6n + 4\(⋮\)b (2)
Từ (1), (2) ta có:
(6n + 4) - (6n + 3)\(⋮\)b
\(\Leftrightarrow\)1\(⋮\)b
\(\Rightarrow\)b = 1
Vậy ƯCLN(2n + 1, 3n + 2) là 1
\(\Rightarrow\)Phân số tối giản
a) Đặt ƯCLN(n+1; 2n+3) = d
=> (2n + 3) - (n + 1) chia hết cho d
=> (2n + 3) - [2.(n + 1)] chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 1 chia hết cho d => d = 1
Do ƯCLN(n+1; 2n+3) = 1 nên \(\frac{n+1}{2n+3}\) tối giản
b) Đặt ƯCLN(2n+3; 4n+8) = d
=> (4n + 8) - (2n + 3) chia hết cho d
=> (4n + 8) - [2.(2n + 3)] chia hết cho d
=> (4n + 8) - (4n + 6) chia hết cho d
=> 2 chia hết cho d => d \(\in\) {1; 2}
Nhưng d khác 2 vì d là ước chung của 2 số lẻ nên d = 1
Do ƯCLN(2n+3; 4n+8) = 1 nên \(\frac{2n+3}{4n+8}\) tối giản
a) \(\frac{n+1}{2n+3}\)
Đặt ƯCLN(n+1; 2n+3) = d
=> n + 1 \(⋮d\) và 2n + 3 \(⋮d\)
=> (2n + 3) - (n + 1) \(⋮d\)
=> (2n + 3) - [2.(n + 1)] \(⋮d\)
=> (2n + 3) - (2n + 2) \(⋮d\)
=> 1 \(⋮d\)
=> d = 1
Do ƯCLN(n+1; 2n+3) = 1 nên phân số \(\frac{n+1}{2n+3}\) tối giản
b) \(\frac{2n+3}{4n+8}\)
Đặt ƯCLN(2n+3;4n+8) = d
=> 2n+3 \(⋮d\) và 4n+8\(⋮d\)
=> (4n + 8) - (2n + 3) \(⋮d\)
=> (4n + 8) - [2.(2n + 3)] \(⋮d\)
=> (4n + 8) - (4n + 6) \(⋮d\)
=> 2 chia hết cho d
=> d ∈ ∈ {1; 2}
Vì 2n + 3 là số lẻ, 4n + 8 là số chẵn nên ƯC(2n+3;4n+8) là 1 số lẻ
=> \(d\ne2\Rightarrow d=1\)
Do ƯCLN(2n+3; 4n+8) = 1 nên phân số \(\frac{2n+3}{4n+8}\) tối giản
a, Gọi ƯCLN (4n+3;5n+4 ) = \(d\inℕ^∗\)
Ta có : \(4n+3⋮d\Rightarrow20n+15⋮d\left(1\right);5n+4⋮d\Rightarrow20n+16⋮d\left(2\right)\)
Lấy (2) - (1) \(20n+16-20n-15⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
b, Gọi ƯCLN( \(n^3+2n+1;n^2+2\)) = \(d\inℕ^∗\)
Ta có : \(n^3+2n+1⋮d\left(1\right);n^2+2⋮d\Rightarrow n^3+2n⋮d\left(2\right)\)
Lấy (1) - (2) \(n^3+2n+1-n^3-2n⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
a) gọi d là ƯCLN ( 5n+4;4n+3 )
=> 5n+4 chia hết cho d và 4n+3 chia hết cho d
=> (5n+4)-(4n+3) chia hết cho d
=> 4.(5n+4) - 5(4n+3) chia hết cho d
=> 20n+16-20n-15 chia hết cho d
=> 1 chia hết cho d
=> d=1 => 5n+4/4n+3 là phân số tối giản (ĐPCM)