Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=2^1+2^2+2^3+...+2^{100}\)
\(S=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(S=\left(2^1+2^2\right)+2^2\left(2^1+2^2\right)+...+2^{98}\left(2^1+2^2\right)\)
\(S=\left(2^1+2^2\right).\left(1+2^2+...+2^{98}\right)\)
\(S=6.\left(1+2^2+...+2^{98}\right)⋮3\)
S=21+22+23+...+2100$S=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)$S=(21+22)+(23+24)+...+(299+2100)$S=\left(2^1+2^2\right)+2^2\left(2^1+2^2\right)+...+2^{98}\left(2^1+2^2\right)$
S = 2 + 2 2 + 2 3 + ... + 2 99 + 2 100
S = ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) + ... + ( 2 96 + 2 97 + 2 98 + 2 99 + 2 100 )
S = ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) + ... + ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) . 2 95
S = 62 + ... + 62 . 2 96
S = 62 ( 1 + ... + 2 96 )
Vì 62 chia hết cho 31
=> 62 ( 1 + ... + 2 96 ) chia hết cho 31
=> S chia hết cho 31
cho S = 1+3+32+ 33 + 34 + .......+ 399
Tổng S có tổng cộng 100 số hạng
S = 1+3+32+ 33 + 34 + .......+ 399
= (1+3) +(32+ 33) + (34 +35) .......(388+ 399 ) có 50 nhóm
= 4 + 32.(1+3)+34(1+3)+........+388(1+3)
= 4+ 32.4+34.4+........+388.4
= 4 (1+ 32+34+........+388) chia hết cho 4
b)
= (1+3 + 32+ 33) + (34 +35+36+37) .......(386+387+388+ 399 ) có 100:4 = 25 nhóm
= (1+3 + 32+ 33) + 34.(1+3 + 32+ 33) .......386.(1+3 + 32+ 33)
= 40+ 34.40 .......386.40
= 40 ( 1 +34+ 38+....+386) chia hết cho 40
= 4+ 32.4+34.4+........+388.4
= 4 (1+ 32+34+........+388) chia hết cho 4
3 + 32 + .... + 3100
= ( 3 + 33 ) + ..... + ( 398 + 3100 )
= 3 ( 1 + 9 ) + ..... + 398 ( 1 + 9 )
= 3 . 10 + ..... + 398 . 10
10 . ( 3 + .... + 398 ) chia hết cho 5
=1+3+3^2+3^3+........+3^11
=(1+3+3^2+3^3)+ ..........+ (3^8+3^9+3^10+3^11)
=40+......+3^8(1+3+3^2+3^3)
=40+......+3^8.40
=40(1+.....+3^8)
Mà 40 chia hết cho 40
Nên (1+.......+3^8) chia hết cho 40
--> 3^0+3^1+3^2+3^3+.....+3^8 chia hết cho 40
\(3^1+3^2+...+3^{99}+3^{100}\)
= \(\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
= \(3^1.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{99}.\left(1+3\right)\)
= \(3^1.4+3^3.4+...+3^{99}.4\)
= \(4.\left(3^1+3^3+...+3^{99}\right)\) chia hết cho 4
Nên \(3^1+3^2+...+3^{99}+3^{100}\) chia hết cho 4
C=3(1+3+9+27)+....+3^97(1+3+9+27)
C=3.40+...+3^97.40
C=40(3+...+3^97) chia hết cho 40
=> C chia hết cho 40(ĐPCM)