Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2.để 2 số hạn đầu tiên lại,còn lại 99 số ta chia làm 33 nhóm mỗi nhóm có 3 số liên tiếp nhau.
Ta có \(=2+2^2+2^3+2^4+.....2^{100}\)
\(=2+2\left(1+2+2^2\right)+2^5\left(1+2+2^2\right)+....+2^{98}\left(1+2+2^2\right)\)
\(=2+2.7+2^5.7+.....+2^{98}.7\)
\(\Rightarrow\)Tổng này chia 7 dư 2
bài 1
abcabc=abc.1001
có 1001chia hết cho 7
=>abc.1001 chia hết cho 7
còn chia hết cho 11 và 13 thì tương tự
bài 2
A=(2100+299+298)+...+(24+23+22)+21
A=(298.22+298.21+298.1)+....+(22.22+22.21+22.1)+21
A=298.(22+21+1)+...+22.(22+21+1)+21
A=298.7+...+22.7+21
A=(298+22).7 +21
có 7 chia hết co 7
=>(298+22).7 chia hết cho 7
=>Achia 7 dư 21
a) Gọi tổng là A. Ta có :
A = ( 21 + 22 ) + ( 23 + 24 ) + ... + ( 299 +2100 )
A = 21 ( 1 + 2 ) + 23 ( 1 + 2 ) + ... + 299 ( 1 + 2 )
A = 3 . ( 21 + 23 + ... + 299 )
\(\Rightarrow\)A chia hết cho 3 ( đpcm )
b) Gọi tổng là B. Ta có :
B = ( 31 + 32 + 33 ) + ... + ( 31996 + 31997 + 31998 )
B = 31 ( 1 + 2 + 10 ) + ... + 31996 ( 1 + 2 + 10 )
B = 13 . ( 31 + ... + 31996 )
\(\Rightarrow\)B chia hết cho 13 ( đpcm )
Cristiano Ronaldo ko thấy đề hỏi c/m đó hay sao mà còn hỏi
Bạn vô đây tham khảo nha Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
gọi A = 2+2^2+2^3+......+2^100
A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+......+(2^97+2^98+2^99+2^100)
A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+......+(2^97+2^98+2^99+2^100)
A=(2+2^2+2^3+2^4).1+(2+2^2+2^3+2^4).4+......+(2+2^2+2^3+2^4).98
A= 30.1 + 30.4 +.......+ 30.98
A= 30.(1+4+...+98)
Vì 30 chia hết cho 3
=>30.(1+4+...98) chia hết cho 3
Hay 2+2^2+2^3+......+2^100 chia hết cho 3.