Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\frac{1}{201}>\frac{1}{400}\)
\(\frac{1}{202}>\frac{1}{400}\)
\(\frac{1}{203}>\frac{1}{400}\)
.................
\(\frac{1}{399}>\frac{1}{400}\)
⇒ \(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(199 số hạng \(\frac{1}{400}\))
⇒ \(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}+\frac{1}{400}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(200 số hạng \(\frac{1}{400}\)) = 200.\(\frac{1}{400}\)=\(\frac{1}{2}\)
⇒ A > \(\frac{1}{2}\)
Vậy A > \(\frac{1}{2}\) (ĐPCM)
Đặt \(S=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{399}+\frac{1}{400}\)
Ta thấy :
\(\frac{1}{201}>\frac{1}{400}\)
\(\frac{1}{202}>\frac{1}{400}\)
...
\(\frac{1}{399}>\frac{1}{400}\)
\(\Rightarrow S>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)
có 200 dãy \(\Rightarrow S>\frac{200}{400}=\frac{1}{2}\)
Vậy : \(S>\frac{1}{2}\)
1/201 + 1/202 + ... + 1/400 > 1/400 x 200
1/201 + 1/202 + ... + 1/400 > 1/2
Vậy 1/201 + 1/202 + ... + 1/400 > 1/2
Đặt \(A=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{399}+\frac{1}{400}\)
Vì \(\frac{1}{201}>\frac{1}{202}>...>\frac{1}{399}>\frac{1}{400}\)nên :
\(A< \left(\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\right)\)( Có 200 số )
\(A< \frac{1}{400}\times200\)
\(A< \frac{200}{400}\)
\(A< \frac{1}{2}\)( Điều phải chứng minh )
Các phân số \(\frac{1}{201};\frac{1}{202};...;\frac{1}{400}\) đều lớn hơn \(\frac{1}{400}\Rightarrow\frac{1}{201}+\frac{1}{202}+...+\frac{1}{400}>\frac{1}{400}.200=\frac{1}{2}\) (do có 200 số hạng)
=> điều phải chứng minh
Bài 2:
a, S = 1/11 + 1/12 + .. +1/20 với 1/2
SỐ số hạng tổng S: [20 - 11]: 1 + 1 = 10 số
mà 1/11 > 1/20
1/12 > 1/20
.........................
1/20 = 1/20
=> 1/11 + 1/12 + ... + 1/20 > 1/20 . 10 => S > 1/2
b, B = 2015/2016 + 2016/2017 và C = 2015+2016/2016+2017
Dễ dàng ta thấy: C = 4031/4033 < 1
B = 2015/2016 + 2016/2017
B = 2015/2016 + [1/2016 + 4062239/4066272]
B = [2015/2016 + 1/2016] + 4062239/4066272]
B = 1 +4062239/4066272
=> B > 1
Vậy B > C
c, [-1/5]^9 và [-1/25]^5
ta có: 255 = [52]5 = 52.5 = 510 > 59
=> [1/5]9 > [1/25]5
=> [-1/5]9 < [-1/25]5
d, 1/32+1/42+1/52+1/62 và 1/2
ta có: 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 = 1/9 + 1/16 + 1/25 + 1/36
mà: 1/9 < 1/8
1/16 < 1/8
1/25 < 1/8
1/36 < 1/8
=> 1/9+1/16+1/25+1/36 < 1/2
Vậy 1/32+1/42+1/52+1/62 < 1/2
Bài 1:
A = 3/4 . 8/9 . 15/16....2499/2500
A = [1.3/22][2.4/32]....[49.51/502]
A = [1.2.3.4.5...51 / 2.3.4....50][3.4.5...51 / 2.3.4...50]
A = 1/50 . 51/2
A = 51/100
B = 22/1.3 + 32/2.4 + ... + 502/49.51
B = 4/3.9/8....2500/2499
Nhận thấy B ngược A => B = 100/51 [cách tính tương tự tính A]
Bài 2:
a. S = 1/11+1/12+...+1/20 và 1/2
Số số hạng tổng S: [20 - 11]: 1 + 1 = 10 [ps]
ta có: 1/11 > 1/20