Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (n + 2015) - (n + 2014) = 1
mà n là số tự nhiên nên n + 2015 và n + 2014 phải là hai số tự nhiên liên tiếp như vậy chắc chắn tồn tại 1 trong hai số là số chẵn. Mà số chẵn thì luôn chia hết cho 2
Vậy : (n + 2014).(n + 2015) ⋮ 2 (đpcm)
\(\left(n+2014\right)\left(n+2015\right)\in B\left(2\right)\)
\(\Rightarrow\left(n+2014\right)\left(n+2015\right)⋮2\)
\(\Rightarrow\left[{}\begin{matrix}n+2014⋮2\\n+2015⋮2\end{matrix}\right.\)
Xét \(n⋮2\)
\(\Rightarrow n+2014⋮2\) (2 số chẵn cộng lại cũng là số chẵn)
Xét \(n\)\(⋮̸\)\(2\)
\(\Rightarrow n+2015⋮2\) (2 số lẻ cộng lại là số chẵn)
Vậy \(\left(n+2014\right)\left(n+2015\right)\) là bội của 2.
a, Ta thấy n;n+1;n+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 ; có 1 số chia hết cho 3
=> n.(n+1).(n+1) chia hết cho 2 và 3 hay n.(n+1).(n+2) là bội của 2 và 3
b, Ta thấy n;n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1).(2n+1) chia hết cho 2 hay n.(n+1).(2n+1)là bội của 2
+ Nếu n = 3k ( k thuộc N ) thì n.(n+1).(2n+1) chia hết cho 3(1)
+ Nếu n = 3k+1(k thuộc N) thì 2n+1 = 6n+3 = 3.(n+1) chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3 (2)
+ Nếu n = 3k+2 (k thuộc N ) thì n+1 = 3n+3 = 3.(n+1) chia hết cho 3 => n(.n+1).(2n+1) chia hết cho 3(3)
Từ (1);(2) và (3) => n.(n+1).(2n+1) chia hết cho 3 hay n.(n+1).(2n+1) là bội của 3
=> ĐPCM
a) A = 2014 + 20142 + 20143 + 20144 + ..... + 20142014
A = ( 2014 + 20142 ) + ( 20143 + 20144 ) + ..... + ( 20142013 + 20142014 )
A = 2014( 1 + 2014 ) + 20143( 1 + 2014 ) + ....... 20142013( 1 + 2014 )
A = 2014 . 2015 + 20143 . 2015 + ....... + 20142013 . 2015
A = ( 2014 + 20143 + ...... 20142013 ) . 2015 chia hết cho 2015
b) Ta có 6 chia hết cho n - 1
=> n-1 thuộc Ư(6) = { 1 ; 2 ; 3 ; 6 }
Nếu n - 1 = 1 => n = 2 (tm)
Nếu n - 1 = 2 => n = 3 (tm)
Nếu n - 1 = 3 => n = 4 (tm)
Nếu n - 1 = 6 => n = 7 (tm)
Vậy n thuộc { 2 ; 3 ; 4 ; 7 }
Mk ko chắc là đúng
hok tốt
n=chẵn
=> 2k.(2k+3)
=>2k.2k+2k.3
=>k.k+2k.3.2.2
=>k.k+k.2.2.2.3
=>k.k+k.24
=>k.2+k.12.2 chia hết cho 2 => n.(n+3) là bội của 2
n=lẻ
=>(2k+1).(2k+1+3)
=>(2k+1).(2k+4)
=>(k+1).(2k+4).2
=>(k+1).(2k+4) .2 chia hết cho 2
=>
=>n.(n+3) là bội của 2