Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:k.(k+1).(k+2)-(k+1).k.(k+1)
= k(k+1)\([\left(k+2\right)-\left(k-1\right)]\)
= k(k+1) \([k+2-k+1]\)
= k(k+1) \([\left(k-k\right)+\left(2+1\right)]\)
=k(k+1).3
=3k(k+1)
Vậy : Với k thuộc N khác 0 ta luôn có :
k.(k+1).(k+2)-(k-1).k.(k+1)=3k.(k+1).
Chứng tỏ: \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\)
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\)
\(VT=\left(k+1\right)\left[k\left(k+2\right)-k\left(k-1\right)\right]=\left(k+1\right)\left(k^2+2k-k^2+k\right)\)
\(=\left(k+1\right).3k=VP\)
k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)=k(k+1)(k+2).[(k+3)-(k-1)]=4k(k+1)(k+2)
=>đpcm
Vế trái = \(k\cdot\left(k+1\right)\left(k+2\right)-\left(k-1\right)\cdot k\left(k+1\right)=k\left(k+1\right)\left[\left(k+2\right)-\left(k-1\right)\right]\)
\(=k\left(k+1\right)\left(k+2-k+1\right)=3k\left(k+1\right)\) = Vế phải
k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3 . k . (k + 1)
k . (k + 1) . [(k + 2) - (k - 1)]
= k . (K + 1) . 3 = 3 . k . (K + 1) => ĐPCM
Ta có k(k+1)(k+2) là tích 3 stn nên chia hết cho 6
k(k-1)(k+1) là tích 3 stn nên chia hết cho 6
do đó VT chia hết cho 6
xét vế phải k(k+1) chia hết cho 2 mà nhân thêm 3 nên sẽ chia hết cho 6
VP chia hết cho 6
Do đó với mọi k thuộc N ta luôn có được nghiệm của bài
Có vế trái:
= [k(k+1)].[(k+2)-(k-1)]
=[k(k+1)].3=3k(k+1) => (ĐPCM)
k(k+1)(k+2)-(k-1)k(k+1)=k(k+1)(k+2-k+1)=3.k.(k+1)
S=1.2+2.3+3.4+...+n(n+1)
=>3S=1.2.3+2.3.3+3.4.3+...+n(n+1)3
=1.2.3+2.3.(4-1)+3.4(5-2)+...+n.(n+1)[(n+2)-(n-1)]
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)
=n(n+1)(n+2)
\(\Rightarrow S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)