Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(a+b⋮6\)
\(\Rightarrow a⋮6,b⋮6\)
\(\Rightarrow a^3⋮6,b^3⋮6\)
\(\Rightarrow a^3+b^3⋮6\left(đpcm\right)\)
Vậy \(a^3+b^3⋮6\)
Ta có: a3=a.a.a
b3=b.b.b
Ta thấy: a+b nên (a+b)(a+b)(a+b) chia hết cho 6
Vậy a3+b3 chia hết cho 6.
Tick mik nhiều nhe!
Câu a) có 2 trường hợp nha bn
TH1
n là số lẻ thì (n+10) là số lẻ và (n+17) là số chẵn => (n+10)(n+17) là số chẵn hay nói cách khác (n+10)(n+17) chia hết cho 2
TH2
n là số chẵn thì (n+10) là số chẵn và (n+17) là số lẻ => (n+10)(n+17) là số chẵn hay nói cách khác (n+10)(n+17) là chia hết cho 2
Vậy (n+10)(n+17) chia hết cho 2
Câu b)
Ta có \(a^3+b^3+c^3-a+b+c=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\)
Mà \(a\left(a-1\right)\left(a+1\right)\)và \(b\left(b-1\right)\left(b+1\right)\)và \(c\left(c-1\right)\left(c+1\right)\) là 3 số liên tiếp
Nên \(a\left(a-1\right)\left(a+1\right)\)và \(b\left(b-1\right)\left(b+1\right)\)và \(c\left(c-1\right)\left(c+1\right)\)chia hết cho 2 và 3 => chia hết cho 6
Ta có \(a^3+b^3+c^3-a+b+c\)chia hết cho 6 mà \(a^3+b^3+c^3\)chia hết cho 6
Vậy \(a+b+c\)chia hết cho 6
a3 + b3 + c3 = ( a + b + c )2 = ( a + b + c ) x ( a + b + c )
Mà a + b + c chia hết cho 6 nên ( a + b + c )2 chia hết cho 6 => a3 + b3 + c3 chia hết cho 6
Chưa đc chính xác
Xét hiệu (a3+b3+c3) - (a+b+c)
=a3+b3+c3-a-b-c
=(a3-a) + (b3-b)+(c3-c)
=a(a2-1)+ b(b2-1) +c(c2-1)
=a(a-1)(a+1)+b(b-1)(b+1)+c(c-1)(c+1)
Vì a(a-1)(a+1) là tích 3 số tự nhiên liên tiếp=> chia hết cho 2 và 3
Mà (2;3)=1
=> a(a-1)(a+1) chia hết cho 6
=> (a3 +b3+c3) - (a+b+c) chia hết cho 6
Mà a+b+c chia hết cho 6
=> a3+b3+c3 chia hết cho 6 (đđcm)
Ta có: a3+b3=(a+b)(a2-ab+b2)
Mà a+b chia hết 6
=>a2-ab+b2 chia hết 6
=>a3+b3 chia hết 6
b) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)-2abc\\ =abc+ac^2+a^2b+a^2c+cb^2+ab^2+bc^2+abc-2abc\\ =ac^2+a^2b+a^2c+cb^2+ab^2+bc^2\)
\(=ab\left(a+b\right)+ac\left(a+c\right)+bc\left(b+c\right)=ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)-3abc\\ \)\(=\left(a+b+c\right)\left(ab+ac+bc\right)-3abc\)
Vì a+b+c chia hết cho 6 => (a+b+c)(ab+ac+bc) chia hết cho 6
Vì a+b+c chia hết cho 6 nên nó tồn tại ít nhất 1 số chẵn => 3abc chia hết cho 6
=> (a+b)(b+c)(c+a)-2abc chia hết cho6
Xét \(\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)\)
\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)\)
Ta có \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮6\)(vì tích của 3 số nguyên/số tự nhiên liên tiếp)
Tương tự ta có \(\left(b^3-b\right)⋮6;\left(c^3-c\right)⋮6;\left(d^3-d\right)⋮6\)
\(\Rightarrow\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)⋮6\)
\(\Rightarrow\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)⋮6\)
Mà \(a+b+c+d⋮6\Rightarrow a^3+b^3+c^3+d^3⋮6\left(ĐPCM\right)\)
P/S: bt làm có bài này thôi :v